

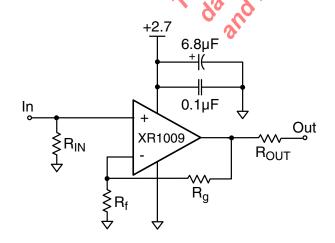
XR1009, XR2009

0.2mA, 35MHz Rail-to-Rail Amplifiers

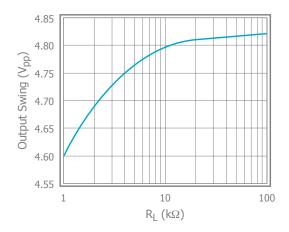
General Description

The XR1009 (single) and XR2009 (dual) are ultra-low power, low cost, voltage feedback amplifiers. These amplifiers use only 208 μ A of supply current and are designed to operate from a supply range of 2.5V to 5.5V (\pm 1.25 to \pm 2.75). The input voltage range extends 300mV below the negative rail and 1.2V below the positive rail.

The XR1009 and XR2009 offer superior dynamic performance with a 35MHz small signal bandwidth and 27V/µs slew rate. The combination of low power, high bandwidth, and rail-to-rail performance make the XR1009 and XR2009 well suited for battery-powered communication/ computing systems.


FEATURES

- 208µA supply current
- 35MHz bandwidth
- Input voltage range with 5V supply: -0.3V to 3.8V
- Output voltage range with 5V supply: 0.08V to 4.88V
- 27V/µs slew rate
- 21nV/√Hz input voltage noise
- 13mAlinear output current
- Fully specified at 2.7V and 5V supplies
- Replaces MAX4281


CAPPLICATIONS

- Portable/battery-powered applications
- Mobile communications, cell phones, pagers
- ADC buffer
- Active filters
- Portable test instruments
- Signal conditioning
- Medical equipment
- Portable medical instrumentation
- Interactive whiteboards

Frequency Response

Output Swing vs. R

Absolute Maximum Ratings

Stresses beyond the limits listed below may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

V _S	0V to 6V
V _{IN}	V_S - 0.5V to + V_S +0.5V
Continuous Output Current	30mA to +30mA

Operating Conditions

Supply Voltage Range	2.5 to 5.5V
Operating Temperature Range	40°C to 125°C
Junction Temperature	150°C
Storage Temperature Range	65°C to 150°C
Lead Temperature (Soldering, 10s)	260°C

Package Thermal Resistance

θ _{JA} (TSOT23-5)	215°C/W
θ _{JA} (SOIC-8)	150°C/W
θ _{JA} (MSOP-8)	200°C/W
Package thermal resistance (θ_{JA}), JEDEC test boards, still air	standard, multi-layer

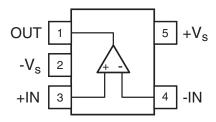
ESD Protection

XR1009 (HBM) (MBM)	2kV
XR2009 (HBM)	2.5kV
ESD Rating for HRM (Human Body Model)	

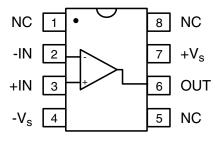
Espiration of the land in the land in the land in and in and in a she are the land in a she are the

Electrical Characteristics at +2.7V

 T_A = 25°C, V_S = +2.7V, R_f = R_g = 2.5k Ω , R_L = 2k Ω to $V_S/2;$ G = 2; unless otherwise noted.


Symbol	Parameter	Conditions	Min	Тур	Max	Units
Frequency [Frequency Domain Response					
UGBW _{SS}	Unity Gain -3dB Bandwidth	$G = +1, V_{OUT} = 0.05V_{pp}, R_f = 0$		28		MHz
BW _{SS}	-3dB Bandwidth	$G = +2, V_{OUT} < 0.2V_{pp}$		15		MHz
BW _{LS}	Large Signal Bandwidth	$G = +2$, $V_{OUT} = 2V_{pp}$		7		MHz
GBWP	Gain Bandwidth Product	$G = +11, V_{OUT} = 0.2V_{pp}$		16		MHz
Time Doma	in Response					
t _R , t _F	Rise and Fall Time	V _{OUT} = 0.2V step; (10% to 90%)		16		ns
ts	Settling Time to 0.1%	V _{OUT} = 1V step		140		ns
OS	Overshoot	V _{OUT} = 1V step		1		%
SR	Slew Rate	G = -1, 2V step	•	20		V/µs
Distortion/N	oise Response	11, 10				
HD2	2nd Harmonic Distortion	100kHz, V _{OUT} = 1V _{pp}		-85		dBc
HD3	3rd Harmonic Distortion	100kHz, V _{OUT} = 1V _{pp}		-63		dBc
THD	Total Harmonic Distortion	100kHz, V _{OUT} = 1V _{pp}		62		dB
e _n	Input Voltage Noise	>10kHz		23		nV/√Hz
XTALK	Crosstalk	100kHz, V _{OUT} = 0.2V _{pp}		98		dB
DC Perform	ance	0 0				
V _{IO}	Input Offset Voltage	m ins		0.8		mV
d _{VIO}	Average Drift	6 20 00		11		μV/°C
I_{B}	Input Bias Current			0.37		μΑ
dl _B	Average Drift	111, 46, 1		1		nA/°C
I _{OS}	Input Offset Current	0000		8		nA
PSRR	Power Supply Rejection Ratio	DC	56	60		dB
A _{OL}	Open Loop Gain	Vouт = V s / 2		65		dB
Is	Supply Current	per channe		185		μΑ
Input Chara	cteristics					
R _{IN}	Input Resistance	Non-inverting		>10		ΜΩ
C _{IN}	Input Capacitance	70		1.4		pF
CMIR	Common Mode Input Range	8		-0.3 to 1.5		V
CMRR	Common Mode Rejection Ratio	DC, $V_{CM} = 0V$ to $V_S - 1.5V$		92		dB
Output Cha	racteristics					
V	Output Voltage Suing	$R_L = 2k\Omega$ to $V_S / 2$		0.08 to 2.6		V
V _{OUT}	Output Voltage Swing	$R_L = 10k\Omega$ to $V_S / 2$		0.06 to 2.62		V
I _{OUT}	Output Current			±8		mA
I _{SC}	Short Circuit Current			±12.5		mA

Electrical Characteristics at +5V


 T_A = 25°C, V_S = +5V, R_f = R_g = 2.5k Ω , R_L = 2k Ω to $V_S/2;$ G = 2; unless otherwise noted.

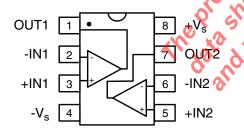
Symbol	Parameter	Conditions	Min	Тур	Max	Units	
Frequency [Frequency Domain Response						
UGBW _{SS}	Unity Gain -3dB Bandwidth	$G = +1, V_{OUT} = 0.05V_{pp}, R_f = 0$		35		MHz	
BW _{SS}	-3dB Bandwidth	$G = +2, V_{OUT} < 0.2V_{pp}$		18		MHz	
BW _{LS}	Large Signal Bandwidth	$G = +2$, $V_{OUT} = 2V_{pp}$		8		MHz	
GBWP	Gain Bandwidth Product	G = +11, V _{OUT} = 0.2V _{pp}		20		MHz	
Time Doma	n Response			,		,	
t _R , t _F	Rise and Fall Time	V _{OUT} = 0.2V step; (10% to 90%)		13		ns	
ts	Settling Time to 0.1%	V _{OUT} = 1V step		140		ns	
OS	Overshoot	V _{OUT} = 1V step		1		%	
SR	Slew Rate	G = -1, 2V step	•	27		V/µs	
Distortion/N	oise Response	*1, 10		,		•	
HD2	2nd Harmonic Distortion	100kHz, V _{OUT} = 2V _{pp}		-78		dBc	
HD3	3rd Harmonic Distortion	100kHz, V _{OUT} = 2V _{pp}		-66		dBc	
THD	Total Harmonic Distortion	100kHz, V _{OUT} = 2V _{pp}		65		dB	
e _n	Input Voltage Noise	>10kHz		21		nV/√Hz	
XTALK	Crosstalk	100kHz, V _{OUT} = 0.2V _{po}		98		dB	
DC Perform	ance	01 4		,		•	
V _{IO}	Input Offset Voltage	Wills.	-5	-1.5	5	mV	
d _{VIO}	Average Drift	6 20 00		20		μV/°C	
I _B	Input Bias Current	3,700	-1.3	0.37	1.3	μA	
dl _B	Average Drift	111 46, 1		1		nA/°C	
I _{OS}	Input Offset Current	0000		7	130	nA	
PSRR	Power Supply Rejection Ratio	DG	56	60		dB	
A _{OL}	Open Loop Gain	Vouт = V s / 2	56	62		dB	
Is	Supply Current	per channe		208	260	μA	
Input Chara	cteristics						
R _{IN}	Input Resistance	Non-inverting		>10		ΜΩ	
C _{IN}	Input Capacitance	200		1.2		pF	
CMIR	Common Mode Input Range	4		-0.3 to 3.8		V	
CMRR	Common Mode Rejection Ratio	DC, $V_{CM} = 0V$ to $V_S - 1.5V$	65	95		dB	
Output Characteristics							
	and all	$R_L = 2k\Omega$ to $V_S/2$	0.2 to 4.7	0.1 to 4.8		V	
V _{OUT}	Output Voltage Swing	$R_L = 10k\Omega$ to $V_S / 2$		0.08 to 4.88		V	
l _{OUT}	Output Current			±8.5		mA	
I _{SC}	Short Circuit Current			±13		mA	

XR1009 Pin Configurations TSOT-5

SOIC-8

XR1009 Pin Assignments

TSOT-5

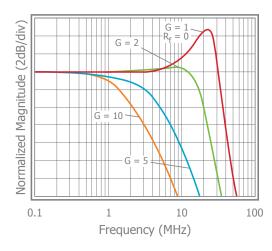

Pin No.	Pin Name	Description
1	OUT	Output
2	-V _S	Negative supply
3	+IN	Positive input
4	-IN	Negative input
5	+V _S	Positive supply

SOIC-8

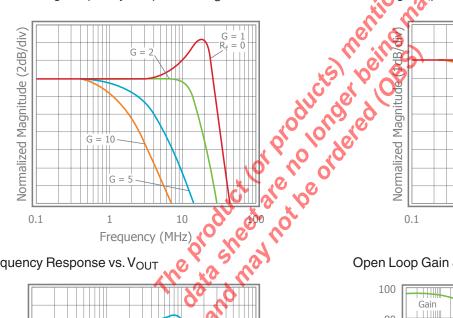
Pin No.	Pin Name	Description
1	NC	No Connect
2	-IN	Negative input
3	C+IN	Positive input
4	-Vs	Negative supply
5	NC	No Connect
6	ООТ	Output
7	C+V _S	Positive supply
48 10	NC	No Connect

XR2009 Pin Configuration

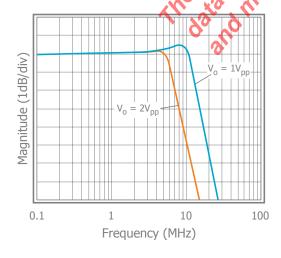
SOIC-8 / MSOP-8

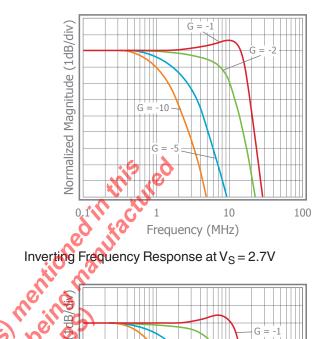


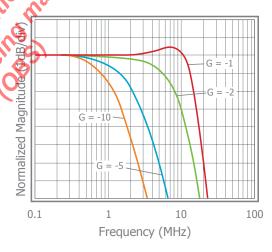
		·	3 113
6 OUT	5	NC	No Connect
5 NC	6	OUT	Output
	7	c+Vs	Positive supply
	19	NC	No Connect
	XR2009 P SOIC-8 / MS	Pin Assignme	ents
adver of	Pin No.	Pin Name	Description
- 010 the 111	1	OUT1	Output, channel 1
8 tVs	2	-IN1	Negative input, channel 1
7 OUT2	3	+IN1	Positive input, channel 1
	4	-V _S	Negative supply
6 -IN2 6	5	+IN2	Positive input, channel 2
+IN2	6	-IN2	Negative input, channel 2
—			
<u> </u>	7	OUT2	Output, channel 2
	7	OUT2 +V _S	Output, channel 2 Positive supply


Typical Performance Characteristics

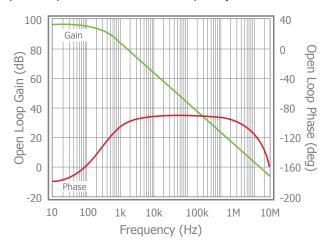
 $T_A = 25^{\circ}C$, $V_S = +5V$, $R_f = R_g = 2.5k\Omega$, $R_L = 2k\Omega$ to $V_S/2$; G = 2; unless otherwise noted.


Non-Inverting Frequency Response at $V_S = 5V$

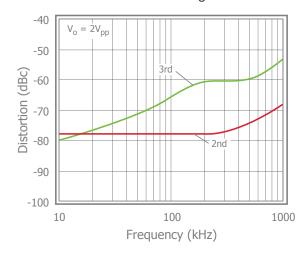

Non-Inverting Frequency Response at $V_S = 2.7V$

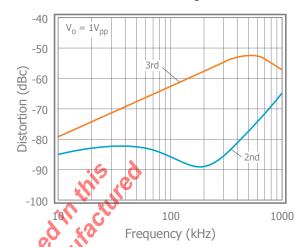


Frequency Response vs. VOUT

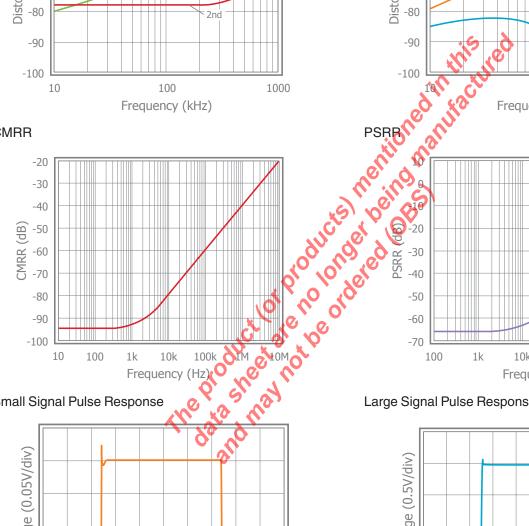


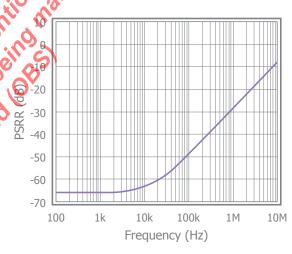
Inverting Frequency Response at $V_S = 5V$


Open Loop Gain & Phase vs. Frequency

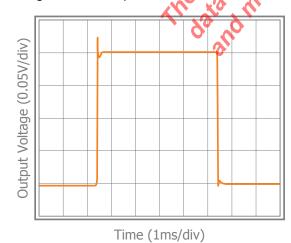

Typical Performance Characteristics

 $T_A = 25^{\circ}C$, $V_S = +5V$, $R_f = R_g = 2.5k\Omega$, $R_L = 2k\Omega$ to $V_S/2$; G = 2; unless otherwise noted.

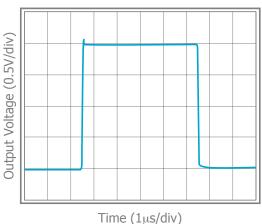

2nd & 3rd Harmonic Distortion at $V_S = 5V$



2nd & 3rd Harmonic Distortion at $V_S = 2.7V$

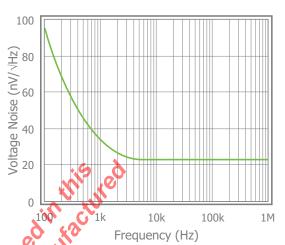


CMRR



Small Signal Pulse Response


Large Signal Pulse Response


Typical Performance Characteristics

 T_A = 25°C, V_S = +5V, R_f = R_g = 2.5k Ω , R_L = 2k Ω to V_S /2; G = 2; unless otherwise noted.

Output Swing vs. R_L

Input Voltage Noise

The product are no ordered of sheet may not be ordered ordered ordered ordered and may not be ordered and may not be ordered o

Application Information

General Description

The XR1009 and XR2009 are a single supply, general purpose, voltage-feedback amplifiers fabricated on a complementary bipolar process. The XR1009 offers 35MHz unity gain bandwidth, 27V/µs slew rate, and only 208µA supply current. It features a rail-to-rail output stage and is unity gain stable.

The design utilizes a patent pending topology that provides increased slew rate performance. The common mode input range extends to 300mV below ground and to 1.2V below Vs. Exceeding these values will not cause phase reversal. However, if the input voltage exceeds the rails by more than 0.5V, the input ESD devices will begin to conduct. The output will stay at the rail during this overdrive condition.

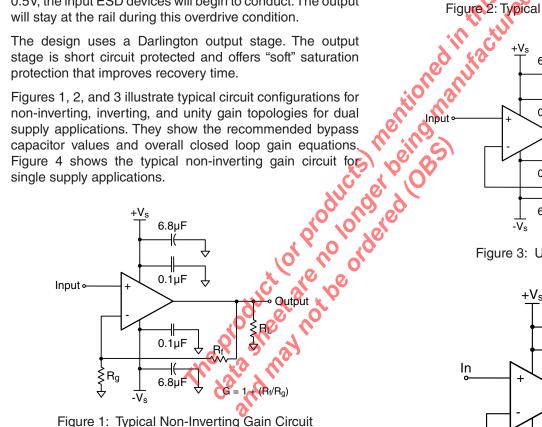


Figure 1: Typical Non-Inverting Gain Circuit

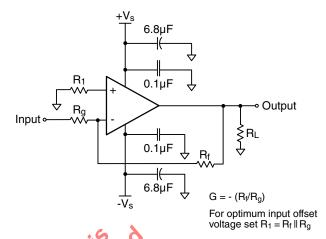


Figure 2: Typical Inverting Gain Circuit

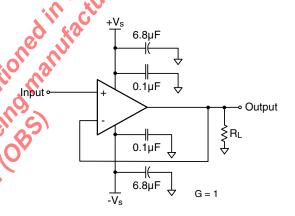


Figure 3: Unity Gain Circuit

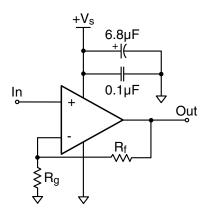


Figure 4: Single Supply Non-Inverting Gain Circuit

Power Dissipation

Power dissipation should not be a factor when operating under the stated $2k\Omega$ load condition. However, applications with low impedance, DC coupled loads should be analyzed to ensure that maximum allowed junction temperature is not exceeded. Guidelines listed below can be used to verify that the particular application will not cause the device to operate beyond it's intended operating range.

Maximum power levels are set by the absolute maximum junction rating of 150°C. To calculate the junction temperature, the package thermal resistance value ThetaJA (θ_{JA}) is used along with the total die power dissipation.

$$T_{Junction} = T_{Ambient} + (\theta_{JA} \times P_D)$$

Where T_{Ambient} is the temperature of the working environment.

In order to determine PD, the power dissipated in the load needs to be subtracted from the total power delivered by the supplies.

$$P_D = P_{supply} - P_{load}$$

Supply power is calculated by the standard power equation.

$$P_{\text{supply}} = V_{\text{supply}} \times I_{\text{RMSsupply}}$$
 $V_{\text{supply}} = V_{\text{S+}} - V_{\text{S-}}$

Power delivered to a purely resistive load is:

$$P_{load} = ((V_{load})_{PMS^2})/Rload_{off}$$

Rload_{eff} in Figure 3 would be calculated as: $R_L \parallel (R_f + R_g)$

$$R_L \parallel (R_f + R_g)$$

These measurements are basic and are relatively easy to perform with standard lab equipment. For design purposes however, prior knowledge of actual signal levels and load impedance is needed to determine the dissipated power. Here, PD can be found from

Quiescent power can be derived from the specified Is values along with known supply voltage, V_{supply}. Load power can be calculated as above with the desired signal amplitudes using:

$$(V_{load})_{RMS} = V_{peak} / \sqrt{2}$$

$$(I_{load})_{RMS} = (V_{load})_{RMS} / Rload_{eff}$$

The dynamic power is focused primarily within the output stage driving the load. This value can be calculated as:

$$P_{Dynamic} = (V_{S+} - V_{load})_{RMS} \times (I_{load})_{RMS}$$

Assuming the load is referenced in the middle of the power rails or V_{supply}/2.

The XR1009 is short circuit protected. However, this may not guarantee that the maximum junction temperature (+150°C) is not exceeded under all conditions. Figure 5 shows the maximum safe power dissipation in the package vs. the ambient temperature for the packages available.

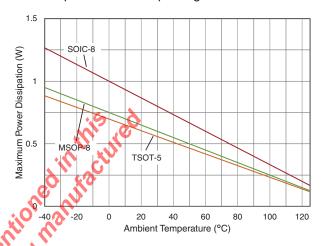


Figure 5. Maximum Power Derating

Figure 5. Maxin Priving Capacitive Loads

Increased phase delay at the output due to capacitive loading can cause ringing, peaking in the frequency response, and possible unstable behavior. Use a series resistance, Rs, between the amplifier and the load to help improve stability and settling performance. Refer to Figure 6.

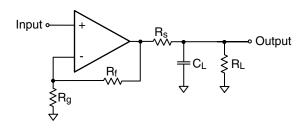


Figure 6. Addition of R_S for Driving Capacitive Loads

Overdrive Recovery

For an amplifier, an overdrive condition occurs when the output and/or input ranges are exceeded. The recovery time varies based on whether the input or output is overdriven and by how much the ranges are exceeded. The XR1009, and XR2009 will typically recover in less than 20ns from an overdrive condition.

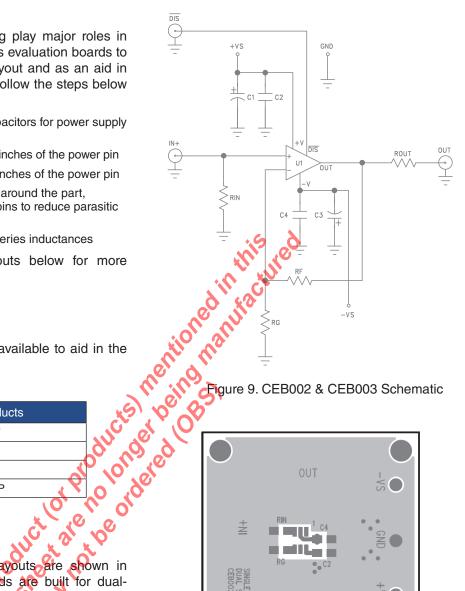
Layout Considerations

General layout and supply bypassing play major roles in high frequency performance. Exar has evaluation boards to use as a guide for high frequency layout and as an aid in device testing and characterization. Follow the steps below as a basis for high frequency layout:

- Include 6.8µF and 0.1µF ceramic capacitors for power supply decoupling
- Place the 6.8µF capacitor within 0.75 inches of the power pin
- Place the 0.1µF capacitor within 0.1 inches of the power pin
- Remove the ground plane under and around the part. especially near the input and output pins to reduce parasitic capacitance
- Minimize all trace lengths to reduce series inductances

Refer to the evaluation board layouts below for more information.

Evaluation Board Information


The following evaluation boards are available to aid in the testing and layout of these devices:

Evaluation Board #	Products
CEB002	XR1009 in TSOT
CEB003	XR1009 in SOIC
CEB006	XR2009 in SOIC
CEB010	XR2009 in MSOP

Evaluation Board Schematics

Evaluation board schematics and layouts are shown in Figures 9-18 These evaluation boards are built for dualsupply operation. Follow these steps to use the board in a single-supply application:

- 1. Short -V_S to ground.
- 2. Use C3 and C4, if the -V_S pin of the amplifier is not directly connected to the ground plane.

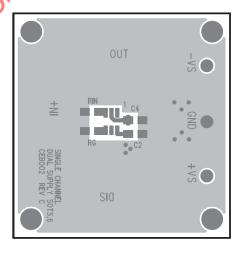
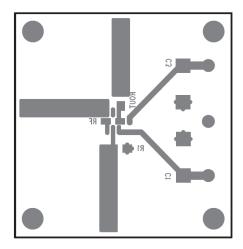
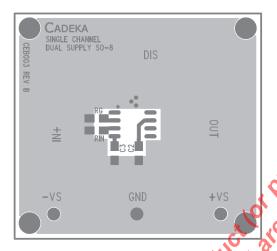




Figure 10. CEB002 Top View

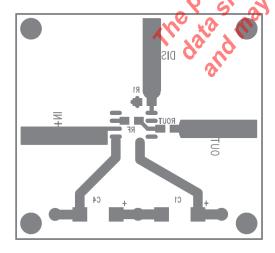
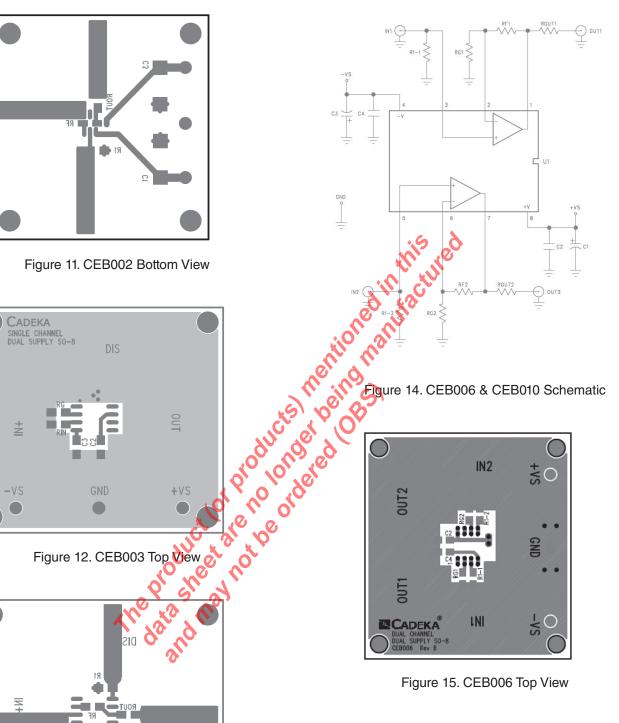
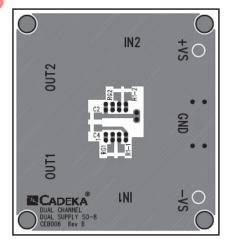
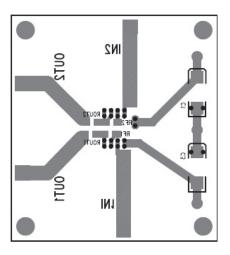
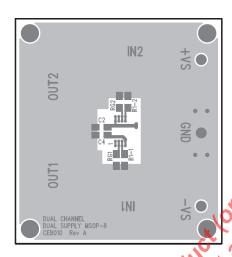






Figure 13. CEB003 Bottom View

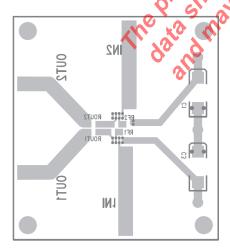
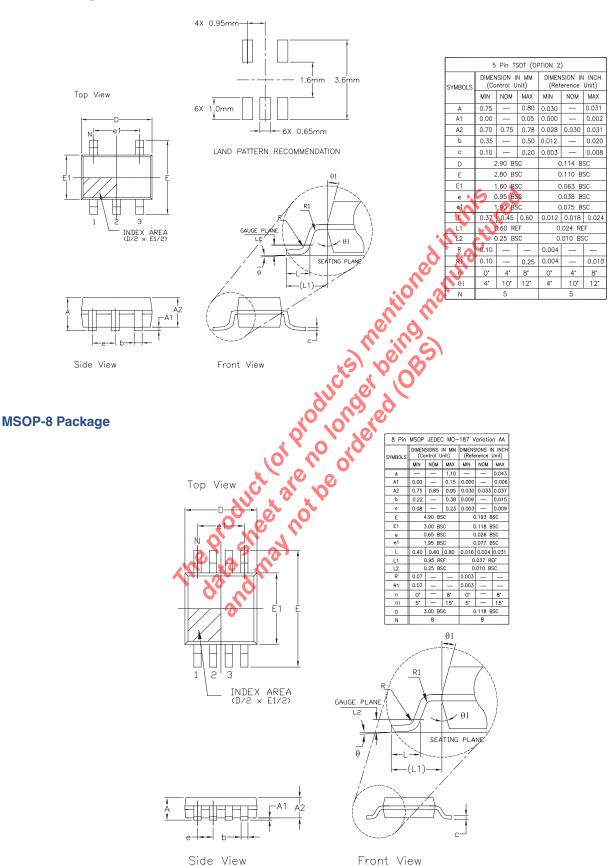
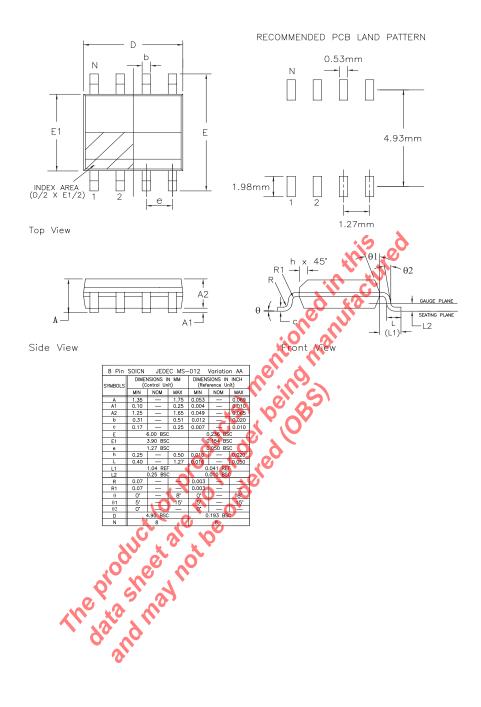



Figure 18. CEB010 Bottom View


Figure 17. CEB010 Top View of Art of the real part of the

Mechanical Dimensions

TSOT-5 Package

SOIC-8 Package

Ordering Information

Part Number	Package	Green	Operating Temperature Range	Packaging Quantity	Marking
XR1009 Ordering Inform	nation				
XR1009IST5X	TSOT-5	Yes	-40°C to +125°C	2.5k Tape & Reel	UC
XR1009IST5MTR	TSOT-5	Yes	-40°C to +125°C	250 Tape & Reel	UC
XR1009IST5EVB	Evaluation Board	N/A	N/A	N/A	N/A
XR1009ISO8X	SOIC-8	Yes	-40°C to +125°C	2.5k Tape & Reel	XR1009
XR1009ISO8MTR	SOIC-8	Yes	-40°C to +125°C	250 Tape & Reel	XR1009
XR1009ISO8EVB	Evaluation Board	N/A	N/A	N/A	N/A
XR2009 Ordering Inform	nation				·
XR2009ISO8X	SOIC-8	Yes	-40°C to +125°C	2.5k Tape & Reel	XR2009
XR2009ISO8MTR	SOIC-8	Yes	-40°C to +125°C	250 Tape & Reel	XR2009
XR2009ISO8EVB	Evaluation Board	N/A	N/A	N/A	N/A
XR2009IMP8X	MSOP-8	Yes	-40°C to +125°C	2.5k Tape & Reel	2009
XR2009IMP8MTR	MSOP-8	Yes	-40°C to +125°C	250 Tape & Reel	2009
XR2009IMP8EVB	Evaluation Board	N/A	N/A	N/A	N/A

Moisture sensitivity level for all parts is MSL-1.

Revision History

Revision	Date	Description		
1A	June 2014	Initial Release [ECN 1426-10 106/24/14]		
1B	Sept 2014	Added XR1009 ESD, increased operating temperature range, updated package outline drawings, and removed Preliminary note on XR1009. [ECN 1436-03 09/04/14]		
		The product are he to		
For Further Ass	sistance:	deand		
Email: CustomerSup	Email: CustomerSupport@exar.com or HPATechSupport@exar.com			
Exar Technical Doc	Exar Technical Documentation: http://www.exar.com/techdoc/			

Exar Corporation Headquarters and Sales Offices Tel.: +1 (510) 668-7000 48760 Kato Road Fremont, CA 94538 - USA Fax: +1 (510) 668-7001

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.