

XR1008, XR2008

0.5mA, 75MHz Rail-to-Rail Amplifiers

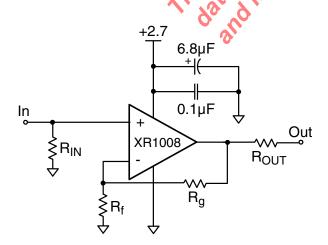
General Description

The XR1008 (single) and XR2008 (dual) are rail-to-rail output amplifiers that offer superior dynamic performance with 75MHz small signal bandwidth and 50V/µs slew rate. The XR1008 and XR2008 amplifiers consume only 505µA of supply current per channel and are designed to operate from a supply range of 2.5V to 5.5V (±1.25 to ±2.75).

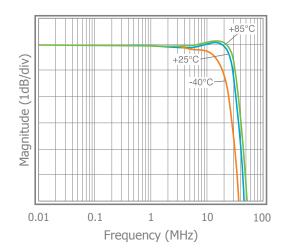
The combination of low power, high output current drive, and rail-to-rail performance make the XR1008 and XR2008 well suited for battery-powered metering and test equipment.

The combination of low cost and high performance make these amplifiers suitable for high volume industrial applications such as ultrasonic heat meters, water meters and other applications requiring high speed and low power.

FEATURES


- 505µA supply current
- 75MHz bandwidth
- Input voltage range with 5V supply: -0.3V to 3.8V
- Output voltage range with 5V supply: 0.07V to 4.86V
- 50V/µs slew rate
- 12nV/√Hz input voltage noise
- 15mAlinear output current
- Fully specified at 2.7V and 5V supplies

APPLICATIONS


- Portable/battery-powered applications
- Mobile communications, cell phones, pagers
- ADC buffer
- Active filters
- Portable test instruments
- Signal conditioning
- Medical equipment
- Portable medical instrumentation
- Flow meters

Ordering Information - back page

Typical Application

Frequency Response vs. Temperature

Absolute Maximum Ratings

Stresses beyond the limits listed below may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

V _S	0V to 6V
V _{IN}	$-V_S$ - 0.5V to $+V_S$ +0.5V
Continuous Output Current	30mA to +30mA

Operating Conditions

Supply Voltage Range	2.5 to 5.5V
Operating Temperature Range	40°C to 125°C
Junction Temperature	150°C
Storage Temperature Range	65°C to 150°C
Lead Temperature (Soldering, 10s)	260°C

Package Thermal Resistance

θ _{JA} (TSOT-5)	215°C/W
θ _{JA} (SOIC-8)	150°C/W
θ _{JA} (MSOP-8)	200°C/W
Package thermal resistance (θ_{JA}), JE test boards, still air	DEC standard, multi-layer

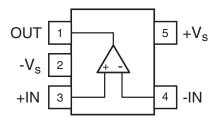
ESD Protection

	XR1008 (HBM) (2kV
The product of products and hot be ordered and may not be ordered an	ESD Rating for HBM (Human Body Model).	
	Sill 4 It.	
	We was	
	1,01,051	
	1,000	
100	0,0	
90, 40		
71° 10'.		
(40',0',0'		
(0, 4, 0,		
Charles No.		
All Kokh		
100 % XO		
or the 1		
The story les		
40,00		
8 *		

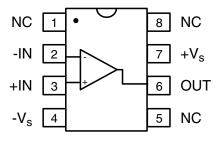
© 2014 Exar Corporation 2 / 17 exar.com/XR1008

Electrical Characteristics at +2.7V

 T_A = 25°C, V_S = +2.7V, R_f = R_g = 1k Ω , R_L = 1k Ω to $V_S/2;$ G = 2; unless otherwise noted.


Symbol	Parameter	Conditions	Min	Тур	Max	Units
Frequency Domain Response						
UGBW _{SS}	Unity Gain -3dB Bandwidth	$G = +1, V_{OUT} = 0.05V_{pp}, R_f = 0$		65		MHz
BW _{SS}	-3dB Bandwidth	$G = +2, V_{OUT} < 0.2V_{pp}$		30		MHz
BW _{LS}	Large Signal Bandwidth	$G = +2$, $V_{OUT} = 2V_{pp}$		12		MHz
GBWP	Gain Bandwidth Product	$G = +11, V_{OUT} = 0.2V_{pp}$		28		MHz
Time Doma	n Response					
t _R , t _F	Rise and Fall Time	V _{OUT} = 0.2V step; (10% to 90%)		7.5		ns
t _S	Settling Time to 0.1%	V _{OUT} = 1V step		60		ns
OS	Overshoot	V _{OUT} = 1V step		10		%
SR	Slew Rate	G = -1, 2V step	>	40		V/µs
Distortion/N	oise Response	111.10				
HD2	2nd Harmonic Distortion	1MHz, V _{OUT} = 1V _{pp}		-67		dBc
HD3	3rd Harmonic Distortion	1MHz, V _{OUT} = 1V _{pp}		-72		dBc
THD	Total Harmonic Distortion	1MHz, V _{OUT} = 1V _{pp}		65		dB
e _n	Input Voltage Noise	>10kHz		12		nV/√Hz
DC Perform	ance	att die				
V _{IO}	Input Offset Voltage	6 4		0		mV
d _{VIO}	Average Drift	Wills.		10		μV/°C
I _B	Input Bias Current	6 20 00		1.2		μA
dI_B	Average Drift	4,00		3.5		nA/°C
I _{OS}	Input Offset Current	111, 46, 16		30		nA
PSRR	Power Supply Rejection Ratio	DC 00 00	60	66		dB
A _{OL}	Open Loop Gain	V _{OUT} = V _S V2		98		dB
IS	Supply Current	per channel		470		μA
Input Chara	cteristics	0, 1, 0,				
R _{IN}	Input Resistance	Non-inverting		9		MΩ
C _{IN}	Input Capacitance	10 K		1.5		pF
CMIR	Common Mode Input Range	100		-0.3 to 1.5		V
CMRR	Common Mode Rejection Ratio	DC, $V_{CM} = 0V$ to $V_S - 1.5V$		74		dB
Output Cha	racteristics	9				
V	Output Voltage Suing	$R_L = 1k\Omega$ to $V_S/2$		0.09 to 2.53		V
V _{OUT}	Output Voltage Swing	$R_L = 10k\Omega$ to $V_S / 2$		0.05 to 2.6		V
l _{OUT}	Output Current			±15		mA
I _{SC}	Short Circuit Current			±30		mA

Electrical Characteristics at +5V


 T_A = 25°C, V_S = +5V, R_f = R_g = 1k $\Omega,~R_L$ = 1k Ω to $V_S/2;~G$ = 2; unless otherwise noted.

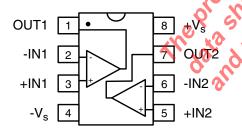
Symbol	Parameter	Conditions	Min	Тур	Max	Units		
Frequency [Frequency Domain Response							
UGBW _{SS}	Unity Gain -3dB Bandwidth	$G = +1, V_{OUT} = 0.05V_{pp}, R_f = 0$		75		MHz		
BW _{SS}	-3dB Bandwidth	$G = +2, V_{OUT} < 0.2V_{pp}$		35		MHz		
BW _{LS}	Large Signal Bandwidth	G = +2, V _{OUT} = 2V _{pp}		15		MHz		
GBWP	Gain Bandwidth Product	$G = +11, V_{OUT} = 0.2V_{pp}$		33		MHz		
Time Doma	n Response			,				
t _R , t _F	Rise and Fall Time	V _{OUT} = 0.2V step; (10% to 90%)		6		ns		
t _S	Settling Time to 0.1%	V _{OUT} = 1V step		60		ns		
OS	Overshoot	V _{OUT} = 1V step		12		%		
SR	Slew Rate	G = -1, 2V step		50		V/µs		
Distortion/N	oise Response	the state of the s						
HD2	2nd Harmonic Distortion	1MHz, V _{OUT} = 2V _{pp}		-64		dBc		
HD3	3rd Harmonic Distortion	1MHz, V _{OUT} = 2V _{pp}		-62		dBc		
THD	Total Harmonic Distortion	1MHz, V _{OUT} = 2V _{pp}		60		dB		
e _n	Input Voltage Noise	>10kHz		12		nV/√Hz		
DC Perform	ance	atil Mo						
V _{IO}	Input Offset Voltage	8, 4	-5	-1	5	mV		
d _{VIO}	Average Drift	mins-		10		μV/°C		
I _B	Input Bias Current	6 20 00	-3.5	1.2	3.5	μΑ		
dl_B	Average Drift			3.5		nA/°C		
I _{OS}	Input Offset Current	111 46, 1		30	350	nA		
PSRR	Power Supply Rejection Ratio	DC 00 00	60	66		dB		
A _{OL}	Open Loop Gain	$V_{OUT} = V_S \sqrt{2}$	65	80		dB		
Is	Supply Current	per channel		505	620	μΑ		
Input Chara	cteristics	0, 1, 0,						
R _{IN}	Input Resistance	Non-inverting		9		MΩ		
C _{IN}	Input Capacitance	10 × 1		1.5		pF		
CMIR	Common Mode Input Range	no		-0.3 to 3.8		V		
CMRR	Common Mode Rejection Ratio	DC, $V_{CM} = 0V$ to $V_S - 1.5V$	65	74		dB		
Output Cha	racteristics							
V	Output Voltage Suing	$R_L = 1k\Omega$ to $V_S/2$	0.2 to 4.65	0.13 to 4.73		V		
V _{OUT}	Output Voltage Swing	$R_L = 10k\Omega$ to $V_S / 2$		0.08 to 4.84		V		
I _{OUT}	Output Current			±15		mA		
I _{SC}	Short Circuit Current			±30		mA		

XR1008 Pin Configurations TSOT-5

SOIC-8

XR1008 Pin Assignments

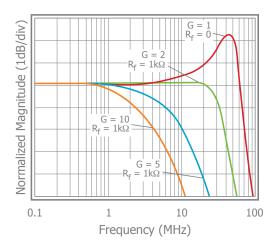
TSOT-5

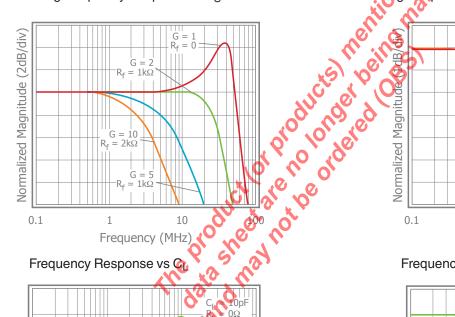

Pin No.	Pin Name	Description
1	OUT	Output
2	-V _S	Negative supply
3	+IN	Positive input
4	-IN	Negative input
5	+V _S	Positive supply

SOIC-8

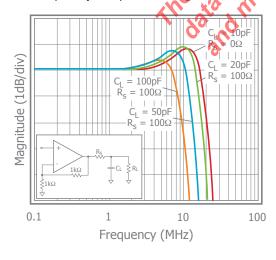
Pin No.	Pin Name	Description
1	NC	No Connect
2	-IN	Negative input
3	C+IN	Positive input
4	-Vs	Negative supply
5	NC	No Connect
6	ООТ	Output
7	C+V _S	Positive supply
48 10	NC	No Connect

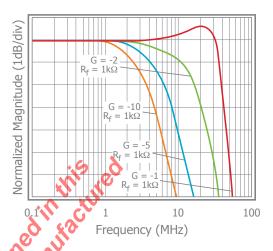
XR2008 Pin Configuration

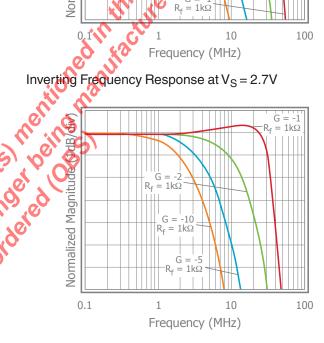

SOIC-8 / MSOP-8


		(A. C.)	3
6 OUT	5	NC	No Connect
5 NC	6	OUT	Output
	7	c+V _S	Positive supply
	48 0	NC	No Connect
or pro	Anne B	rin Assignme	onte
iration	SOIC-8 / MS		
iration Out at a lot	SOIC-8 / MS		Description
ration of the land	Pin No.	SOP-8	
aration B to Special Property of the state o	Pin No. 1 2	SOP-8 Pin Name	Description
B & Vs as has hot	Pin No. 1 2 3	Pin Name OUT1	Description Output, channel 1
	Pin No. 1 2 3 4	Pin Name OUT1 -IN1	Description Output, channel 1 Negative input, channel 1
8 dvs sheet not		Pin Name OUT1 -IN1 +IN1	Description Output, channel 1 Negative input, channel 1 Positive input, channel 1
1 6 -IN2 and	4	Pin Name OUT1 -IN1 +IN1 -V _S	Description Output, channel 1 Negative input, channel 1 Positive input, channel 1 Negative supply
6 -IN2 W	4 5	Pin Name OUT1 -IN1 +IN1 -Vs +IN2	Description Output, channel 1 Negative input, channel 1 Positive input, channel 1 Negative supply Positive input, channel 2

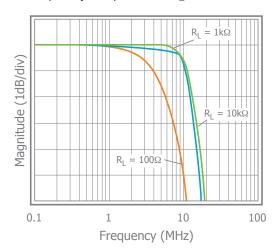
 T_A = 25°C, V_S = +5V, R_f = R_q = 1k Ω , R_L = 1k Ω to $V_S/2$; G = 2; unless otherwise noted.


Non-Inverting Frequency Response at $V_S = 5V$

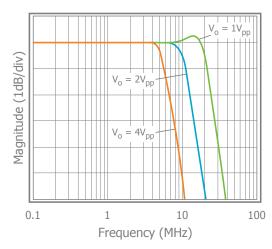

Non-Inverting Frequency Response at V_S = 2.7V



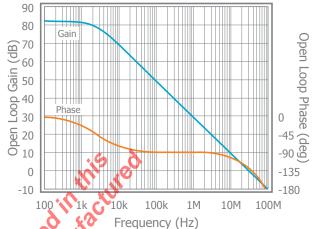
Frequency Response vs 🚱



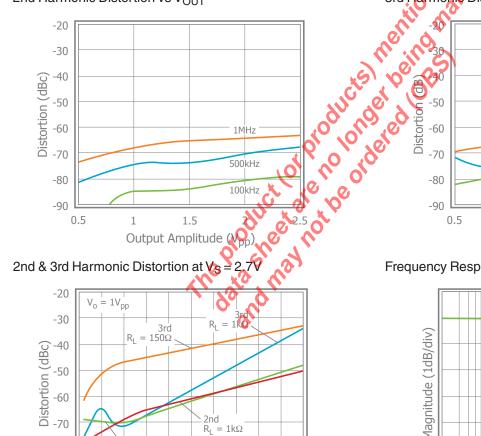
Inverting Frequency Response at $V_S = 5V$

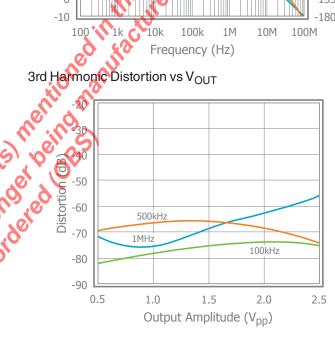


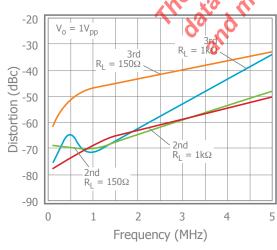
Frequency Response vs RL

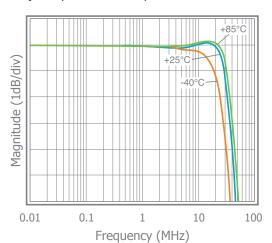


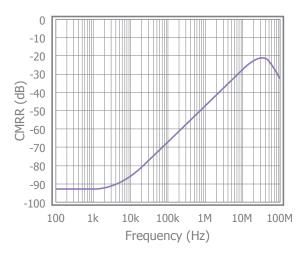
 T_A = 25°C, V_S = +5V, R_f = R_q = 1k Ω , R_L = 1k Ω to $V_S/2$; G = 2; unless otherwise noted.


Frequency Response vs. VOUT

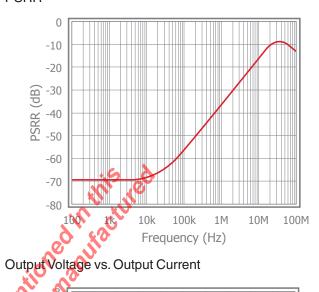



Open Loop Gain & Phase vs. Frequency

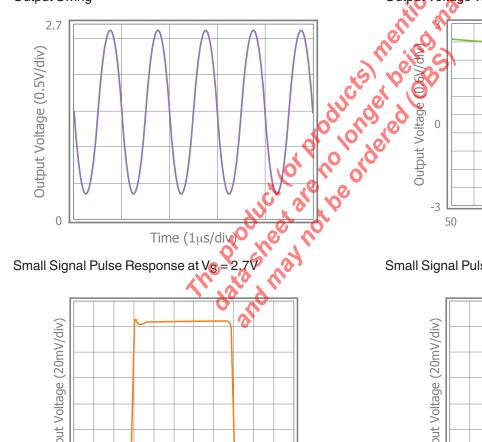

2nd Harmonic Distortion vs VOUT

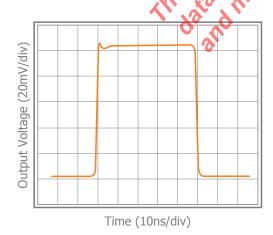


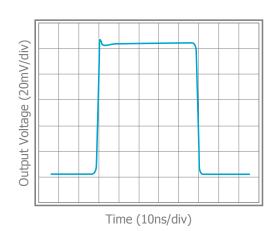
Frequency Response vs. Temperature

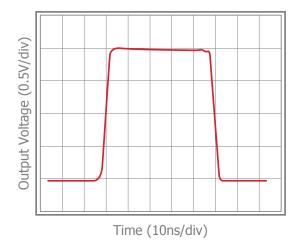


 T_A = 25°C, V_S = +5V, R_f = R_q = 1k Ω , R_L = 1k Ω to $V_S/2$; G = 2; unless otherwise noted.

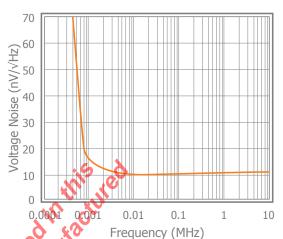

CMRR


PSRR


Output Swing



Small Signal Pulse Response at $V_S = 5V$



 T_A = 25°C, V_S = +5V, R_f = R_g = 1k Ω , R_L = 1k Ω to $V_S/2;$ G = 2; unless otherwise noted.

Large Signal Pulse Response at $V_S = 5V$

Input Voltage Noise

The product are no ordered Offs

Application Information

General Description

The XR1008 family are a single supply, general purpose. voltage-feedback amplifiers fabricated on a complementary bipolar process. The XR1008 offers 75MHz unity gain bandwidth, 50V/µs slew rate, and only 505µA supply current. It features a rail-to-rail output stage and is unity gain stable.

Figures 1, 2, and 3 illustrate typical circuit configurations for non-inverting, inverting, and unity gain topologies for dual supply applications. They show the recommended bypass capacitor values and overall closed loop gain equations. Figure 4 shows the typical non-inverting gain circuit for single supply applications.

The common mode input range extends to 300mV below ground in single supply operation. Exceeding these values will not cause phase reversal. However, if the input voltage exceeds the rails by more than 0.5V, the input ESD devices will begin to conduct.

The design uses a Darlington output stage. The output stage is short circuit protected and offers "soft" saturation protection that improves recovery time.

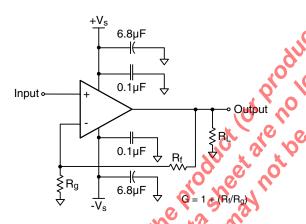


Figure 1: Typical Non-Inverting Gain Circuit

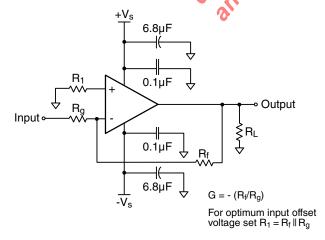


Figure 2: Typical Inverting Gain Circuit

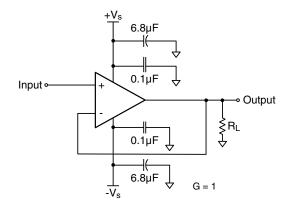


Figure 3: Unity Gain Circuit

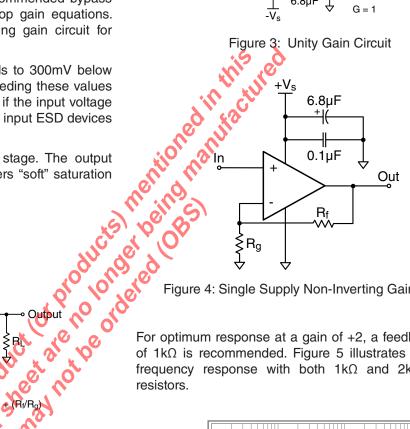


Figure 4: Single Supply Non-Inverting Gain Circuit

For optimum response at a gain of +2, a feedback resistor of $1k\Omega$ is recommended. Figure 5 illustrates the XR1008 frequency response with both $1k\Omega$ and $2k\Omega$ feedback

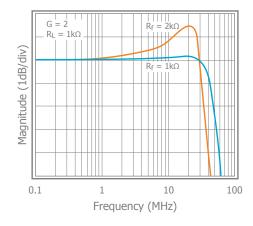


Figure 5: Frequency Response vs. Rf

Power Dissipation

Power dissipation should not be a factor when operating under the stated $1k\Omega$ load condition. However, applications with low impedance, DC coupled loads should be analyzed to ensure that maximum allowed junction temperature is not exceeded. Guidelines listed below can be used to verify that the particular application will not cause the device to operate beyond it's intended operating range.

Maximum power levels are set by the absolute maximum junction rating of 150°C. To calculate the junction temperature, the package thermal resistance value ThetaJA (θ_{JA}) is used along with the total die power dissipation.

$$T_{Junction} = T_{Ambient} + (\theta_{JA} \times P_D)$$

Where T_{Ambient} is the temperature of the working environment.

In order to determine PD, the power dissipated in the load needs to be subtracted from the total power delivered by the supplies.

$$P_D = P_{supply} - P_{load}$$

Supply power is calculated by the standard power equation.

$$P_{\text{supply}} = V_{\text{supply}} \times I_{\text{RMSsupply}}$$
 $V_{\text{supply}} = V_{\text{S+}} - V_{\text{S-}}$

Power delivered to a purely resistive load is:

$$P_{load} = ((V_{load})_{RMS^2})/Rload_{eff}$$

The effective load resistor (Rload_{eff}) will need to include the effect of the feedback network. For instance

Rload_{eff} in Figure 3 would be calculated as: $R_L \parallel (R_f + R_g)$

$$R_L \parallel (R_f + R_{\phi})$$

These measurements are basic and are relatively easy to perform with standard lab equipment. For design purposes however, prior knowledge of actual signal levels and load impedance is needed to determine the dissipated power. Here, PD can be found from

$$P_D = P_{Ouiescent} + P_{Dynamic} - P_{load}$$

Quiescent power can be derived from the specified Is values along with known supply voltage, V_{supply}. Load power can be calculated as above with the desired signal amplitudes using:

$$(V_{load})_{RMS} = V_{peak} / \sqrt{2}$$

$$(I_{load})_{RMS} = (V_{load})_{RMS} / Rload_{eff}$$

The dynamic power is focused primarily within the output stage driving the load. This value can be calculated as:

$$P_{Dynamic} = (V_{S+} - V_{load})_{RMS} \times (I_{load})_{RMS}$$

Assuming the load is referenced in the middle of the power rails or V_{supply}/2.

The XR1008 is short circuit protected. However, this may not guarantee that the maximum junction temperature (+150°C) is not exceeded under all conditions. Figure 6 shows the maximum safe power dissipation in the package vs. the ambient temperature for the packages available.

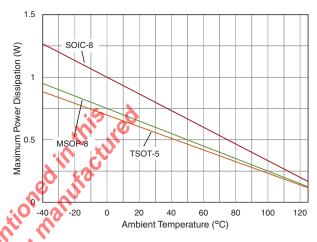


Figure 6. Maximum Power Derating

Figure 6. Maxim

Increased phase delay at the output due to capacitive loading can cause ringing, peaking in the frequency response, and possible unstable behavior. Use a series resistance, Rs, between the amplifier and the load to help improve stability and settling performance. Refer to Figure 7.

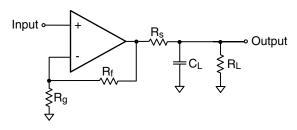


Figure 7. Addition of R_S for Driving Capacitive Loads

Table 1 provides the recommended R_S for various capacitive loads. The recommended R_S values result in approximately <1dB peaking in the frequency response.

C _L (pF)	R _S (Ω)	-3dB BW (MHz)
10pF	0	22
20pF	100	19
50pF	100	12
100pF	100	10.2

Table 1: Recommended R_S vs. C_L

For a given load capacitance, adjust $R_{\rm S}$ to optimize the tradeoff between settling time and bandwidth. In general, reducing $R_{\rm S}$ will increase bandwidth at the expense of additional overshoot and ringing.

Overdrive Recovery

For an amplifier, an overdrive condition occurs when the output and/or input ranges are exceeded. The recovery time varies based on whether the input or output is overdriven and by how much the ranges are exceeded. The XR1008, and XR2008 will typically recover in less than 20ns from an overdrive condition. Figure 5 shows the XR1008 in an overdriven condition.

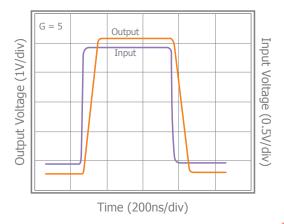


Figure 8: Overdrive Recovery

Layout Considerations

General layout and supply bypassing play major roles in high frequency performance. Exar has evaluation boards to use as a guide for high frequency layout and as an aid in device testing and characterization. Follow the steps below as a basis for high frequency layout:

- Include 6.8µF and 0.1µF ceramic capacitors for power supply decoupling
- Place the 6.8µF capacitor within 0.75 inches of the power pin
- Place the 0.1µF capacitor within 0.1 inches of the power pin
- Remove the ground plane under and around the part, especially near the input and output pins to reduce parasitic capacitance
- Minimize all trace lengths to reduce series inductances

Refer to the evaluation board layouts below for more information.

Evaluation Board Information

The following evaluation boards are available to aid in the testing and layout of these devices:

Evaluation Board #	Products
CEB002	XR1008 in TSOT
CEB003	XR1008 in SOIC
CEB006	XR2008 in SOIC
CEB010	XR2008 in MSOP

Evaluation Board Schematics

Evaluation board schematics and layouts are shown in Figures 9-18 These evaluation boards are built for dual-supply operation. Follow these steps to use the board in a single-supply application:

- 1. Short -V_S to ground.
- 2. Use C3 and C4, if the -V_S pin of the amplifier is not directly connected to the ground plane.

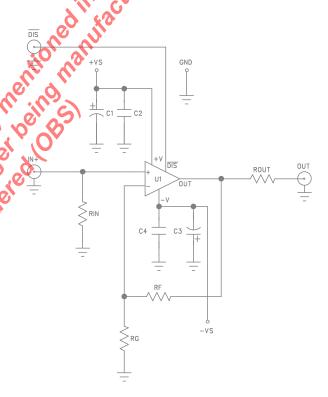
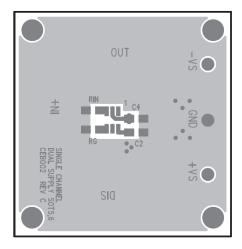
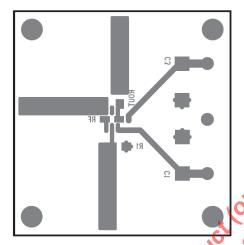




Figure 9. CEB002 & CEB003 Schematic

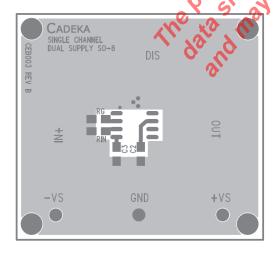
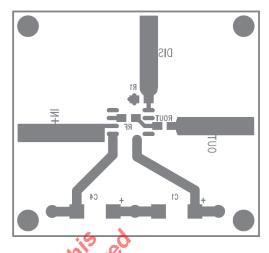
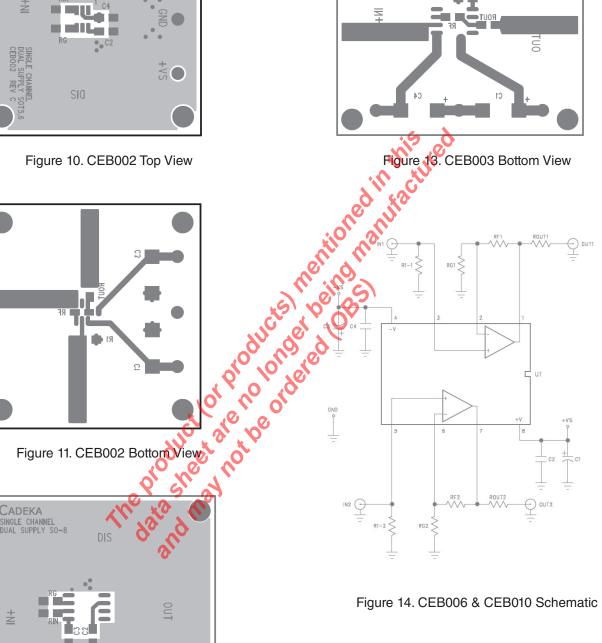
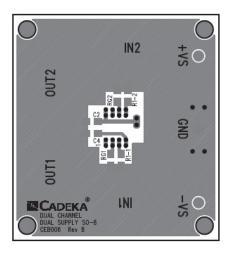
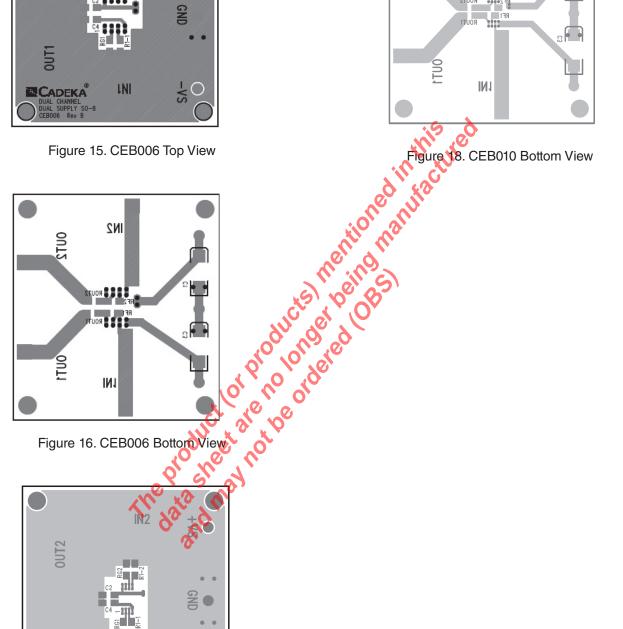






Figure 12. CEB003 Top View

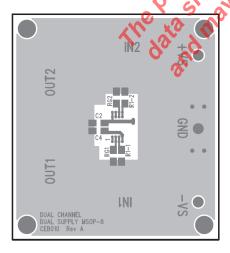
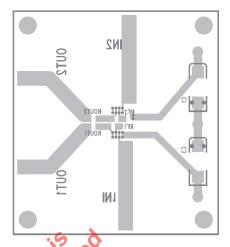
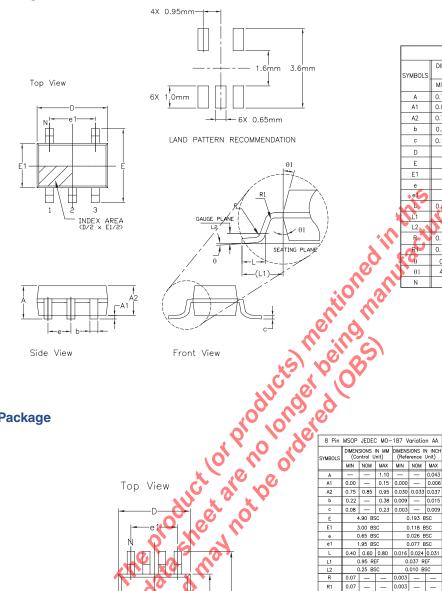
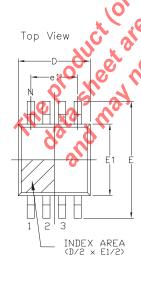




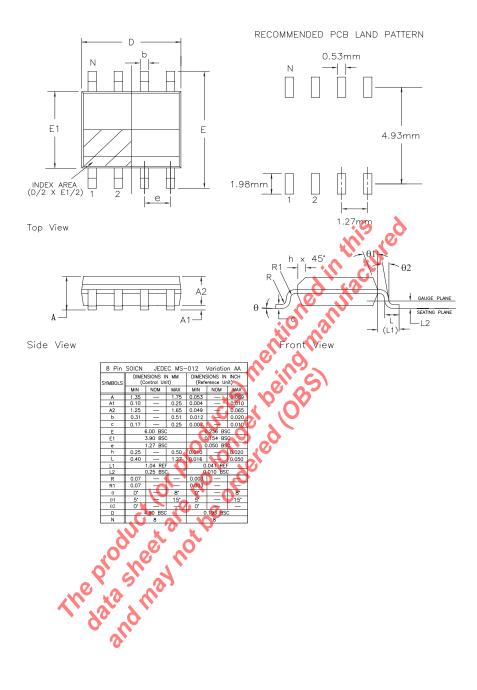
Figure 17. CEB010 Top View


Mechanical Dimensions

TSOT-5 Package

5 Pin TSOT (OPTION 2)							
SYMBOLS	DIMENSION IN MM (Control Unit)			DIMENSION IN INCH (Reference Unit)			
	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.75	_	0.80	0.030	_	0.031	
A1	0.00	_	0.05	0.000	_	0.002	
A2	0.70	0.75	0.78	0.028	0.030	0.031	
b	0.35	_	0.50	0.012	_	0.020	
С	0.10	_	0.20	0.003	_	0.008	
D	2	.90 BS	SC .	С).114 B	SC	
E	2	2.80 BS	SC .	0.110 BSC			
E1	1	.60 BS	SC .	0.063 BSC			
е	(.95 BS	SC .	C	.038 B	SC	
♦ e	1	.90 BS	SC .	C	.075 B	SC	
L	0.37	0.45	0.60	0.012	0.018	0.024	
L1		.60 RE	F	0	.024 RE	F	
L2	().25 BS	SC	0	.010 BS	iC	
R-	0.10	_	_	0.004 — -		-	
R1	0.10	_	0.25	0.004	_	0.010	
θ	0,	4*	8*	0,	4*	8,	
θ1	4°	10°	12*	4*	10°	12*	

MSOP-8 Package


J U	J.00 B3C	0.110 830
N	8	8
GAUGE PLANE	R1 SEATING	-

0.07 — 0.003 — —
0.07 — 8' 0' — 8'
5' — 15' 5' — 15'
7.00 900 0.118 BSC

Side View

Front View

SOIC-8 Package

Ordering Information

Part Number	Package	Green	Operating Temperature Range	Packaging Quantity	Marking	
XR1008 Ordering Information						
XR1008IST5X	TSOT-5	Yes	-40°C to +125°C	2.5k Tape & Reel	TC	
XR1008IST5MTR	TSOT-5	Yes	-40°C to +125°C	250 Tape & Reel	TC	
XR1008IST5EVB	Evaluation Board	N/A	N/A	N/A	N/A	
XR1008ISO8X	SOIC-8	Yes	-40°C to +125°C	2.5k Tape & Reel	XR1008	
XR1008ISO8MTR	SOIC-8	Yes	-40°C to +125°C	250 Tape & Reel	XR1008	
XR1008ISO8EVB	Evaluation Board	N/A	N/A	N/A	N/A	
XR2008 Ordering Information						
XR2008ISO8X	SOIC-8	Yes	-40°C to +125°C	2.5k Tape & Reel	XR2008	
XR2008ISO8MTR	SOIC-8	Yes	-40°C to +125°C	250 Tape & Reel	XR2008	
XR2008ISO8EVB	Evaluation Board	N/A	N/A	N/A	N/A	
XR2008IMP8X	MSOP-8	Yes	-40°C to +125°C	2.5k Tape & Reel	2008	
XR2008IMP8MTR	MSOP-8	Yes	-40°C to +125°C	250 Tape & Reel	2008	
XR2008IMP8EVB	Evaluation Board	N/A	N/A	N/A	N/A	

Moisture sensitivity level for all parts is MSL-1.

Revision History

Revision	Date	Description		
1A	June 2014	Initial Release [ECN1426-09 6/24/14]		
1B	Sept 2014	Added XR1008 ESD, increased operating temperature range, updated package outline drawings, and removed Preliminary note on XR1008. [ECN1436-02 9/4/14		
The product dare to the control of the product dare to the product dare to the control of the co				
For Further As	ssistance:	, gold		
Email: CustomerSupport@exar.com or HPATechSupport@exar.com				
Exar Technical Do	Exar Technical Documentation: http://www.exar.com/techdoc/			

Exar Technical Documentation: http://www.exar.com/techdoc/

Exar Corporation Headquarters and Sales Offices Tel.: +1 (510) 668-7000 48760 Kato Road Fremont, CA 94538 - USA Fax: +1 (510) 668-7001

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.