APPLICATION NOTE ANP2O

Properly Sizing MOSFETs for PWM Controllers

Fundamentals of Properly Sizing MOSFETs for Synchronous Buck Controllers and Their Effects on Efficiency

INTRODUCTION

Today's electronic designs are focusing more on optimizing efficiency in an attempt to minimize unnecessary power dissipation not only to maximize battery life in portable applications but to also assure that the application is running as "cool" as possible.

One of the challenges facing today's designers of synchronous buck PWM controllers is the proper selection of the external MOSFETs. Many designers are unaware that improper MOSFET selection can result in less than optimum efficiency and that proper selection becomes an even more prominent consideration as the conversion ratio increases (increasing input-to-output voltage ratios).

This application note first reviews the fundamentals of driving a MOSFET and then discusses the high-side and low-side MOSFET power losses. Efficiency versus load current data for a typical application circuit using the SP6133 synchronous buck PWM controller is then presented for several configurations of high-side and low-side MOSFETs to demonstrate the impact on efficiency for increasing conversion ratios.

Figure 1: Simplified Synchronous Buck Converter Output Stage Diagram

FUNDAMENTALS OF DRIVING MOSFETS

Since a designer must select the external high-side and low-side MOSFETs required for synchronous PWM controllers, the fundamentals of driving these MOSFETs will be covered before discussing the power losses. Having a clearer understanding of the MOSFET driver and the load presented by the MOSFET will make the MOSFET selection process and the task of estimating their power losses less of a mystery.

A simplified synchronous buck converter diagram is shown in Figure 1. Notice that the gates of both the high-side and low-side MOSFETs are driven by independent MOSFET drivers which are contained within the PWM controller. The term "synchronous" is used to describe the process of turning "on" the lowside MOSFET when the high-side MOSFET is turned "off" (and visa versa). This results in higher efficiencies than those obtained by the classical nonsynchronous converter that utilizes a Schottky diode in place of the low-side MOSFET. Sometimes this Schottky diode is included in synchronous designs and is placed in parallel with the low-side MOSFET to provide a momentary conduction path that is lower loss than the internal body diode of the low-side MOSFET before it is completely turned "on" by the low-side MOSFET driver.

A diagram illustrating the MOSFET driver/MOSFET interface is shown in Figure 2, and the resulting turn on and turn off switching waveforms are shown in Figure 3. The capacitances CGS, $\mathrm{C}_{G D}$ and C_{DS} are used to model the capacitive loading effects of the MOSFET. The key MOSFET data sheet parameters for synchronous PWM buck controllers are the input capacitance CIss, the output capacitance Coss, the reverse capacitance CrSs, the gate-to-source threshold voltage VGS(TH), the "Miller" gate plateau voltage VGP, and the gate resistance Rg. Also, the key MOSFET driver data sheet parameter is the output impedance, Ro. The output current, IG, (source or sink) of the MOSFET driver is limited by its output impedance Ro and is typically specified on the data sheet as Ro (high-level output impedance) and RoL (low-level output impedance). It is important to understand these parameters and how they have an affect on the MOSFET switching transients and the resulting overall efficiency of the converter.

Figure 2: MOSFET Driver/MOSFET Interface.

Turn On Switching Waveforms

Turn Off Switching Waveforms

Figure 3: Turn On \& Turn Off Switching Waveforms
The variables in Figures 2 \& 3 are defined and summarized in Table 2, and time events to thru ts in Figure 3 are discussed in Table 1. When reviewing these switching waveforms and time events, keep in mind that the switching process happens rapidly (nano-seconds) and that the time events t_{0} thru $t R$ and t_{0} thru $t F$ are not intended to represent static states but rather key dynamic states that occur during the MOSFET switching process.

Time	Comment(s)
t_{0}	Output of MOSFET driver begins supplying gate charging current.
to_{t} to t_{1}	The gate capacitance charges, and ID=0 since VGS<VGS(TH).
t_{1}	VGS(TH) is reached; therefore, channel enhancement begins, and ID>0.
t_{1} to to	The gate capacitance continues charging, and ID increases due to increasing channel width.
t_{2}	The gate capacitance is fully charged, and ID=IDD.
t_{2} to t_{3}	The MOSFET is operating in its "active" or "pinch off" region (VGS \geq VGS(TH) and VGD $\leq V G S(T H))$, and CGD discharges causing VDS to decrease resulting in a "Miller" effect capacitance which steals current from the available gate charging current resulting in an approximate constant VGS until CGD has fully discharged. ID $\cong D D$ (remains approximately at a constant value).
t_{3}	CGD has fully discharged; therefore, VDS is at a minimum, and the MOSFET is now operating in its "saturation" or "triode" region (VGS \geq VGS(TH) and VGD \geq VGS(TH)).
$\mathrm{t}_{3}+$	VGS begins increasing again due to additional charging of the gate capacitance referred to as "overdrive" charging. The MOSFET Driver gate charging current is essentially zero once VGS has reached its final value of VGSF. At this point, the MOSFET's channel is fully enhanced.

Table 1: Discussion of Turn-On Time Events to thru ts in Figure 3

Variable	Description	Units	Comment(s)
VGS	Gate-to-Source Voltage	Volts	Instantaneous value
VGSF	Final Gate-to-Source Voltage	Volts	VGSF >> VGS(TH)
VGS(TH)	Gate-to-Source Threshold Voltage(Channel Enhancement Begins)	Volts	Obtained from MOSFET data sheet
VGP	"Miller" Gate Plateau Voltage	Volts	Obtained from MOSFET data sheet
Vds(ON)	"On" State Drain-to-Source Voltage	Volts	$\operatorname{VdS}(\mathrm{ON})=(\mathrm{ID})(\operatorname{RdS}(\mathrm{ON}))$ where $\operatorname{RDS}(\mathrm{ON})$ is the Drain-toSource "On" state resistance of the MOSFET obtained from the data sheet
VDS	Drain-to-Source Voltage	Volts	Instantaneous value
VDD	Supply Voltage	Volts	Constant value
IG	MOSFET Driver Output Current	Amps	Obtained from MOSFET driver/PWM controller data sheet
ID	Drain Current	Amps	Instantaneous value
IDD	Final Drain Current	Amps	Value of I_{D} when MOSFET channel is fully enhanced
QG	Total Gate Charge	Coulombs	QG=QGS+QGD+QOD=(CEI)(VGSF)=(CEI)(VOH)
QGS	Gate-to-Source Charge	Coulombs	-
QgD	Gate-to-Drain "Miller" Charge	Coulombs	-
Qod	Overdrive Charge After Charging "Miller" Capacitance	Coulombs	-
CGS	Gate-to-Source Capacitance	Farads	CISS = CGS + CGD
CGD	Gate-to-Drain Capacitance	Farads	CRSS = CGD
CDS	Drain-to-Source Capacitance	Farads	Coss = CGD + CDS
Cel	Equivalent Gate Capacitance	Farads	CEl=Qg/VgsF=Qg/VoH
tR	Rise Time	seconds	Majority of turn on switching losses occur during this time
tF	Fall Time	seconds	Majority of turn off switching losses occur during this time
t	Time	seconds	-
RG	Gate Resistance	Ohms	Obtained from MOSFET data sheet
Ro	MOSFET Driver Output Impedance (High-Level or Low-Level Output Impedance)	Ohms	Ro=RoH (High-Level Output Impedance) or RoL (Low-Level Output Impedance). Obtained from MOSFET driver/PWM controller data sheet
RDS(ON)	Drain-to-Source "On" State Resistance	Ohms	Obtained from MOSFET data sheet. Usually specified at one or more different gate-to-source voltages.

Table 2: Definition \& Summary of Variables in Figures 2 \& 3
The capacitances specified on most MOSFET data sheets are $\mathrm{C}_{\text {iss }}$ (input capacitance with $\mathrm{V}_{\mathrm{ds}}=0 \mathrm{~V}$), Coss (output capacitance with $\mathrm{V}_{\mathrm{gs}}=0 \mathrm{~V}$), and Crss (reverse capacitance with $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$). MOSFET manufacturers prefer to specify Crss, Coss and Crss instead of Cgs, Cgo and Cos because they can be directly measured. The relationships between these capacitances are given by the following equations:
(1) $\mathrm{C}_{\text {Iss }}=\mathrm{C}_{\mathrm{Gs}}+\mathrm{C}_{\mathrm{Gd}}$
(2) $\mathrm{Coss}=\mathrm{Cgd}+\mathrm{Cos}$
(3) \quad Crss $=C_{g d}$

Since Ciss, Coss and Crss can be obtained from the MOSFET's data sheet and
 equations. It is common practice to assume that C_{Gs} is a constant value and independent of the state of the MOSFET (values of V_{Gs}, Id , etc.). Cgd and Cds on the other hand are both dependent on the value of V_{Ds}; however, this relationship will be ignored to simplify the remainder of the discussion since we are primarily looking for approximate expressions for the turn on rise time and turn off fall time which can be used later to estimate the MOSFET switching losses .

The times t 1 , t2 and the time interval tz-t2 during the MOSFET turn "on" period are given by the following equations.

$$
\begin{equation*}
t_{1}=\left(R_{O H}+R_{G}\right)\left(C_{G S}+C_{G D}\right) \ln \left(\frac{1}{1-\frac{V_{G S(T H)}}{V_{G S F}}}\right) \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& t_{2}=\left(R_{O H}+R_{G}\right)\left(C_{G S}+C_{G D}\right) \ln \left(\frac{1}{1-\frac{V_{G P}}{V_{G S F}}}\right) \tag{5}\\
& t_{3}-t_{2}=\frac{\left(V_{D D}-V_{D S(O N)}\right)\left(R_{O H}+R_{G}\right)\left(C_{G D}\right)}{V_{G S F}-V_{G P}} \tag{6}
\end{align*}
$$

The majority of the turn-on switching losses in the MOSFET occur during the time frame $\mathrm{t}_{3}-\mathrm{t} 1$ which we will refer to as the rise time, t_{k}, and is approximately found from equations (1) thru (6) as

$$
\begin{equation*}
t_{R}=\frac{\left(V_{D D}\right)\left(C_{r s s}\right)\left(R_{O H}+R_{G}\right)}{V_{G S F}-V_{G P}}+\left(R_{O H}+R_{G}\right)\left(C_{i s s}\right) \ln \left(\frac{V_{G S F}-V_{G S(T H)}}{V_{G S F}-V_{G P}}\right) \tag{7}
\end{equation*}
$$

This expression will yield a fairly reasonable estimate for the turn-on switching rise time and will be utilized in the analysis of the high-side and low-side MOSFET power losses in the next section. As mentioned earlier, this expression for t_{R} assumes that $C_{g d}$ and $C_{d s}$ are both independent of the value of $V_{d s}$, and the value for $V_{D S(O N)}$ is assumed to be negligible. Also, the MOSFET package parasitic inductances were ignored in order to simplify the analysis. If these parasitics were taken into account, the rise time would be greater, so it is probably best to use the worst-case data sheet values for $\mathrm{C}_{\text {rss }}$, Roн, Rg, Ciss, etc that yield the largest rise time value in equation (7).

The time t_{4}, and the time intervals $\mathrm{t}^{2}-\mathrm{t} 4$ and tt- t_{5} during the MOSFET turn "off" period are given by the following equations.

$$
\begin{equation*}
t_{4}=\left(R_{O L}+R_{G}\right)\left(C_{G S}+C_{G D}\right) \ln \left(\frac{V_{G S F}}{V_{G P}}\right) \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
t_{5}-t_{4}=\left(R_{O L}+R_{G}\right)\left(C_{G D}\right)\left(\frac{V_{D D}-V_{D S(O N)}}{V_{G P}}\right) \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
t_{6}-t_{5}=\left(R_{O L}+R_{G}\right)\left(C_{G S}+C_{G D}\right)\left(\frac{V_{G P}}{V_{G S(T H)}}\right) \tag{10}
\end{equation*}
$$

As with the calculation of turn-on switching losses, the majority of the turn-off switching losses in the MOSFET occur during the time frame t6-t4 which we will refer to as the fall time, $t \mathrm{~F}$, and is approximately found from equations (1) thru (3) and (8) thru (9) as

$$
\begin{equation*}
t_{F}=\left(R_{O L}+R_{G}\right)\left[C_{r s s}\left(\frac{V_{D D}}{V_{G P}}\right)+C_{i s s}\left(\frac{V_{G P}}{V_{G S(T H)}}\right)\right] \tag{11}
\end{equation*}
$$

As with the turn-on switching rise time, this expression also yields a fairly reasonable estimate for the turn-off switching fall time and will be utilized in the analysis of the high-side and low-side MOSFET power losses in the next section.

Pertinent data sheet values used in the calculation of tF and tF using equations (7) and (8) are summarized in the following Table 3 for the SP6133 synchronous buck (step-down) PWM controller driving the Vishay Siliconix Si4394DY and Si4320DY n-channel MOSFETs. For high conversion ratio buck converters, the Si4394DY is best used on the high-side, and the Si4320DY is best used on the low-side (more on this later).

	SP6133	Si4394DY	Si4320DY
VDD	9 V min, 12V typ, 15V max	-	-
VGSF	5 V typ	-	-
ROH	2.5Ω typ, 3.9Ω max	-	-
RoL	1.5Ω typ, 1.9Ω max	-	-
CISS	-	1900pF typ	6500pF typ
Coss	-	530pF typ	930pF typ
Crss	-	120pF typ	610 pF typ
Rg	-	1.2Ω typ	1.1Ω typ
Rds(ON)	-	$7.7 \mathrm{~m} \Omega$ typ, $9.75 \mathrm{~m} \Omega \mathrm{max}$	$3.2 \mathrm{~m} \Omega$ typ, $4 \mathrm{~m} \Omega \mathrm{max}$
VGS(TH)	-	0.6 V min, 1.8 V max, 1.2 V avg	1 V min, 3V max, 2V avg
VGP	-	2.0 V typ	3.5 V typ

Table 3: Pertinent Data Sheet Values for the SP6133, Si4394DY \& Si4320DY

The minimum and maximum values for $\operatorname{VGS}(\mathrm{TH})$ were used to yield "average" values since typical values were not specified on the Si4394DY and Si4320DY data sheets.

The resulting values for tR and tF are summarized in Table 4 for several different values of the supply voltage VDD.

	Si4394DY			Si4320DY		
V_{DD}	9 V	12 V	15 V	9 V	12 V	15 V
tR	4.1 ns	4.7 ns	5.4 ns	41 ns	47 ns	53 ns
tF	11.5 ns	12.0 ns	12.6 ns	38.8 ns	40.4 ns	42.0 ns

Table 4: tR and tr Estimates for the SP6133 Driving the Si4394DY \& Si4320DY
Notice that the rise and fall time values for the Si4394DY are much smaller than those for the Si4320DY. This is a result of the Si4394DY's much smaller CIss, Coss and Crss capacitance values as summarized in Table 3. These rise and fall time values will be utilized in the next section when the high-side and low-side MOSFET power losses are investigated.

Another method commonly employed to provide rough estimates for the turn-on rise and turn-off fall times is to utilize the gate-to-source voltage (VGS) versus total gate charge (QG) curve which is typically supplied on the MOSFET's data sheet. These curves for the Si4394DY and Si4320DY MOSFETs are shown in the following Figure 4.

Figure 4: Vgs vs. Qg Curves for the Si4394DY and Si4320DY MOSFETs
The final gate-to-source voltage, VGSF, for the SP6133 was given earlier as 5 V typ, so the total gate charge, QG, can be estimated from these curves as 14 nC for the Si4394DY and 48nC for the Si4320DY. The MOSFET driver output current, IG, is approximated for both the turn-on and turn-off switching time intervals as,

Si4394DY
IG(ON) \equiv MOSFET Driver Turn-On Output Current (Source) $) \cong \mathrm{VGSF} /(\mathrm{RoH}+\mathrm{RoH})=5 \mathrm{~V} /(2.5 \Omega+1.2 \Omega)=1.35 \mathrm{~A}$
$\mathrm{IG}(\mathrm{OFF}) \equiv \mathrm{MOSFET}$ Driver Turn-Off Output Current (Sink) $\cong \mathrm{VGSF} /$ RoL +RG$)=5 \mathrm{~V} /(1.5 \Omega+1.2 \Omega)=1.85 \mathrm{~A}$
Si4320DY
IG(ON) \equiv MOSFET Driver Turn-On Output Current (Source) $\cong \mathrm{VGSF} /(\mathrm{RoH}+\mathrm{RG})=5 \mathrm{~V} /(2.5 \Omega+1.1 \Omega)=1.39 \mathrm{~A}$
IG(OFF) \equiv MOSFET Driver Turn-Off Output Current (Sink) $\cong \mathrm{VGSF} /$ RoL $+R G)=5 \mathrm{~V} /(1.5 \Omega+1.1 \Omega)=1.92 \mathrm{~A}$
This, of course, assumes that the MOSFET driver output current remains constant during the turn-on and turn-off switching transients which is not the case in reality. The turn-on rise and turn-off fall times can now be approximated for both MOSFETs as follows.

$$
\begin{aligned}
& \frac{\mathrm{Si} 4394 \mathrm{DY}}{\left.\mathrm{tR} \cong \mathrm{QG} / \mathrm{I}_{(O N}\right)}=14 \mathrm{nC} / 1.35 \mathrm{~A}=10.4 \mathrm{~ns} \\
& \mathrm{t} \cong \mathrm{QG} / \mathrm{IG}_{(\mathrm{OFF})}=14 \mathrm{nC} / 1.85 \mathrm{~A}=7.57 \mathrm{~ns}
\end{aligned}
$$

Si4320DY
$\mathrm{tR} \cong \mathrm{QG} / /_{\mathrm{G}(\mathrm{ON})}=48 \mathrm{nC} / 1.39 \mathrm{~A}=34.5 \mathrm{~ns}$
$\mathrm{tF} \cong \mathrm{QG} / \mathrm{IG}_{(\mathrm{OFF})}=48 \mathrm{nC} / 1.92 \mathrm{~A}=25.0 \mathrm{~ns}$

Keep in mind that these are simply quick estimates and that the results found earlier in Table 4 are going to be in better agreement with actual laboratory measurements.

HIGH-SIDE \& LOW-SIDE MOSFET POWER LOSSES

For the simplified synchronous buck converter illustrated in Figure 1, the ratio of the input voltage to the output voltage is defined as the "conversion ratio" and is approximately equal to the inverse of the high-side MOSFET switch duty cycle. The high-side MOSFET duty cycle is defined as the ratio of its "on" time, toN, to the total switching frequency period which is constant for a fixed frequency PWM controller. The following equations summarize these relationships.
(12) VOUT < VIN
(13) $f s \equiv P W M$ Switching Frequency
(14) $T \equiv P W M$ Switching Frequency Period $=1 / f s$
(15) $D \equiv$ Duty Cycle of High-Side MOSFET Switch $\cong t o n / T$
(16) \quad VIN/VouT \equiv Conversion Ratio $\cong 1 / D$

As can be seen from these relationships, buck converters with high conversion ratios create significant challenges for the PWM controller since the high-side MOSFET duty cycle decreases for increasing conversion ratios. Since high switching frequencies are generally employed in PWM controllers to reduce the size of the inductor and capacitors, very short duration high-side MOSFET pulses are required. For example, if $\mathrm{VIN}=15 \mathrm{~V}$ and $\mathrm{VoUT}=1.8 \mathrm{~V}$, toN is found as 400 ns for a PWM switching frequency of 300 kHz , but is a mere 48 ns for a PWM switching frequency of 2.5 MHz . Producing PWM pulses this short in duration can prove to be challenging for most PWM controllers since it becomes taxing to fully turn the

MOSFET "on" before having to turn around and turn it back "off" again making it difficult to efficiently achieve high conversion ratios.

The power losses associated with the high-side and low-side MOSFETs are a combination of the conduction and switching losses. The conduction losses are a result of the $I^{2} R$ losses in the MOSFET when it is fully enhanced and turned "on", and the switching losses are a result of the MOSFET turn-on and turn-off transitions. The high-side MOSFET power losses, PQH , and low-side MOSFET power losses, PQL, can be approximated by the following equations.

$$
\begin{align*}
& P_{Q H}=P_{Q H(C)}+P_{Q H(S W)} \cong I_{O U T}^{2} R_{D S(O N) H} D+\left(\frac{t_{R H}+t_{F H}}{2}\right) V_{I N} I_{O U T} f_{S} \tag{17}\\
& P_{Q L}=P_{Q L(C)}+P_{Q L(S W)} \cong I_{O U T}^{2} R_{D S(O N) L}(1-D)+\left(\frac{t_{R L}+t_{F L}}{2}\right) V_{D I O D E L} I_{O U T} f_{S}
\end{align*}
$$

Where,
$P \mathrm{QH}(\mathrm{C}) \equiv$ High-Side MOSFET Conduction Losses
$P \mathrm{QH}(\mathrm{SW}) \equiv$ High-Side MOSFET Switching Losses
$\mathrm{PQL}(\mathrm{C}) \equiv$ Low-Side MOSFET Conduction Losses
$\mathrm{PQL}(\mathrm{SW}) \equiv$ Low-Side MOSFET Switching Losses
$R \mathrm{DS}(\mathrm{ON}) \mathrm{H} \equiv$ High-Side MOSFET Drain-to-Source "On" State Resistance
$R \mathrm{DS}(\mathrm{ON}) \mathrm{L} \equiv$ Low-Side MOSFET Drain-to-Source "On" State Resistance
$t R H \equiv$ High-Side MOSFET Turn-On Rise Time
$t R H \equiv$ High-Side MOSFET Turn-Off Fall Time
$t R L \equiv$ Low-Side MOSFET Turn-On Rise Time
$t F L \equiv$ Low-Side MOSFET Turn-Off Fall Time
VDIODEL \equiv Low-Side MOSFET Internal Body Diode Forward Voltage Drop

Approximate expressions for the turn-on rise and turn-off fall times were found in the previous section and can be utilized in equation (17) to approximate the switching power losses for the high-side and low-side MOSFETs. Keep in mind that a MOSFET with a lower RDS(ON) will result in lower conduction losses; however, it typically will have a higher Q_{G} resulting in higher switching losses, so a careful balance between these characteristics should be considered to maximize efficiency. Also, notice that the low-side MOSFET switching losses depends on the MOSFET's own internal body diode since it limits the voltage drop across the MOSFET during switching transitions to about 1 V for both the Si4394DY and Si4320DY. An external Schottky diode can be added in parallel with the low-side MOSFET to further reduce these switching losses since they typically have forward voltage drops of just a few tenths of a volt.

As can be seen upon examination of PQH , the high-side MOSFET conduction losses increase as RDS(ON), lout or D increase (or as the conversion ratio 1/D
decreases), and the switching losses increase as QG (and, therefore trh and tFH), Vin, lout or ft increase. A similar examination of $\mathrm{PQl}_{\text {s }}$ shows the low-side MOSFET conduction losses also increase as RDS(ON), IOUT or the conversion ratio 1/D increase (or as D decreases), and the switching losses also increase as QG (and, therefore tRL and tRL), Iout or fs increase. Keep in mind that Vdiodel will stay fairly constant for varying operational parameters such as IOUT, Vout, D, etc. The entire term for PQL(SW) can become negligible in some cases if a low forward voltage drop Schottky diode is added in parallel with the low-side MOSFET making it a near zero-voltage-switched device.

As intuition might suggest, for a given PWM switching frequency the efficiency peaks where conduction losses in the high-side MOSFET are equal to its switching losses. Therefore, the high-side and low-side MOSFET selection procedure should begin by first identifying the nominal operational values for $\mathrm{V}_{\mathrm{I}} \mathrm{IN}$, Vout, IOUT and fout. A reasonable attempt should then be made to identify a high-side MOSFET that has parameters resulting in approximately equal conduction and switching losses. The low-side MOSFET should then be selected that has the lowest possible RdS(ON) that is available in a small enough package that satisfies any space or cost constraints. Care must also be taken to assure that the maximum junction temperature is not exceeded for each MOSFET over the entire input voltage range at the maximum expected load current and ambient temperature.

APPLICATION CIRCUIT

The SP6133 is a synchronous buck (step-down) PWM controller and is designed to drive a pair of external, n-channel, enhancement mode MOSFETs at a fixed 300 kHz frequency. The part is designed for single supply operation at input voltages ranging from 5 V up to 24 V and can generate output voltages as low as 0.8 V and up to 95% of the input voltage. The part's powerful internal MOSFET gate drivers can drive the gates of external MOSFETs capable of handling output currents as high 30A.

A schematic of the application circuit used to collect efficiency versus load current data can be seen in Figure 5. The circuit utilizes the SP6133 synchronous buck PWM controller. Several different MOSFET configurations were investigated using the Vishay Siliconix Si4320DY and Si4394DY n-channel MOSFETs. The input voltage, $\mathrm{V}_{\operatorname{IN}}$, was varied from 9 V up to 15 V while the output voltage, $\mathrm{V}_{\text {OUt }}$, was held constant at 3.3 V ; therefore, as the input voltage is increased the conversion ratio increases. For each MOSFET configuration and input voltage, the load current was swept from 0A up to 10A using an electronic DC load.

Figure 5: Application Circuit Schematic Using the SP6133

EFFICIENCY DATA

Efficiency versus load current data for the application circuit presented in Figure 5 was collected for several configurations of high-side (Q_{T}) and low-side (Q_{B}) MOSFETs in order to demonstrate the impact on the efficiency for increasing conversion ratios.

Three different input voltages were used to collect the data: $9 \mathrm{~V}, 12 \mathrm{~V}$ and 15 V . The output voltage was held constant at 3.3 V while the output current was swept from OA up to 10A. Data was collected for several different MOSFET configurations as outlined in Table 5.

MOSFET Configuration	\mathbf{Q}_{T}	\mathbf{Q}_{B}	Comment
Optimum	Si 4394 DY	Si 4320 DY	
	$(9.75 \mathrm{~m} \Omega)$	$(4 \mathrm{~m} \Omega)$	Conduction Losses
Reverse	Si 4320 DY	Si 4394 DY	
	$(4 \mathrm{~m} \Omega)$	$(9.75 \mathrm{~m} \Omega)$	Conduction Losses
High-Side Substitute	Si 4320 DY	Si 4320 DY	High Switching
	$(4 \mathrm{~m} \Omega)$	$(4 \mathrm{~m} \Omega)$	Losses
Low-Side Substitute	Si 4394 DY	Si 4394 DY	High Conduction
	$(9.75 \mathrm{~m} \Omega)$	$(9.75 \mathrm{~m} \Omega)$	Losses

Table 5: MOSFET Configurations Used to Collect Efficiency vs. Load Current Data.

As can be seen in Plot 1 the efficiency data curves for both the optimum and reverse configurations almost overlay each other at each input voltage setting for load currents less than about 1.5A. For load currents greater than about 2.0A the efficiency data curves begin to diverge for each input voltage setting with the greatest spreads occurring at the higher input voltages of 12 V and 15V (higher conversion ratios). This divergence is due to the increased conduction losses associated with the reversed low-side MOSFET.

Plot 1: Efficiency vs. Load Current Data for Optimum \& Reverse MOSFET Configurations.

Upon study of Plot 2, the greatest spread of efficiencies for the two configurations at each input voltage setting occurs at medium load currents with convergence occurring at the smaller and larger load currents.

Plot 2: Efficiency vs. Load Current Data for Optimum
\& High-Side Substitute MOSFET Configurations.
Plot 3 shows some interesting results. The efficiencies at medium and light load currents for each input voltage setting for the reverse configuration are significantly greater than they are for the optimum configuration. Only at the larger load currents does a reversal occur and even then, the differences in efficiencies are less than 1%.

Plot 3: Efficiency vs. Load Current Data for Optimum \& Low-Side Substitute MOSFET Configurations.

The following Table 6 compares the peak efficiencies in addition to the efficiencies at load currents of 1 A and 10 A for the various MOSFET configurations at each input voltage setting.

| MOSFET Configuration | Peak Efficiency (\%) | | | | Efficiency (\%) @ 1A | | Efficiency (\%) @ 10A | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 9V | $\mathbf{1 2 V}$ | $\mathbf{1 5 V}$ | $\mathbf{9 V}$ | $\mathbf{1 2 V}$ | $\mathbf{1 5 V}$ | $\mathbf{9 V}$ | $\mathbf{1 2 V}$ | $\mathbf{1 5 V}$ |
| Optimum | 95.5 | 94.7 | 93.9 | 89.0 | 85.5 | 82.6 | 94.6 | 94.1 | 93.2 |
| Reverse | 94.2 | 92.8 | 91.4 | 89.4 | 86.1 | 83.0 | 92.9 | 91.7 | 90.6 |
| High-Side Substitute | 94.3 | 93.0 | 91.5 | 87.1 | 83.5 | 80.1 | 93.8 | 92.8 | 91.2 |
| Low-Side Substitute | 95.7 | 94.8 | 94.0 | 91.7 | 89.1 | 86.9 | 94.3 | 93.5 | 93.0 |

Table 6: Efficiency Comparison for the Various MOSFET Configurations.
As can be seen from this table, the optimum configuration clearly dominates at the highest load current setting of 10A with the most pronounced exceptions occurring at medium and light load currents for the low-side substitute.

CONCLUSIONS

Proper selection of the high and low-side MOSFETs for synchronous buck PWM controllers clearly has an affect on the overall conversion efficiency with the effects becoming more pronounced at higher conversion ratios and load currents. Different high and low-side MOSFETs may sometimes be necessary in order to optimize the overall conversion efficiency; however, the additional cost and hassle associated with having to purchase and stock two separate parts may not justify the sometimes rather small gains in efficiency. This decision will ultimately be driven by cost structures and the overall system requirements.

For further assistance:

Email:
WWW Support page:
Live Technical Chat:
Sipex Application Notes:

Sipexsupport@sipex.com
http://www.sipex.com/content.aspx?p=support http://www.geolink-group.com/sipex/ http://www.sipex.com/applicationNotes.aspx

Sipex Corporation

Headquarters and

Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

