XR32430

3-Driver/5-Receiver Intelligent RS-232 Transceiver
Data Sheets OBS (Obsolete)

Overview

Information 3-Driver/5-Receiver Intelligent RS-232 Transceiver
Supply Voltage (Nom) (V) 3.3, 5
No. of Tx 3
No. of Rx 5
Data Rate (kbps) 1000
HBM ESD (kV) 15
IEC 61000-4-2 Contact (±kV) 8
Int. Charge Pump
No. of Ext Caps 4
Nom Cap Value (µF) 0.1
Shutdown
Internal Caps
TTL Tri-State
Auto On-Line
VL Pin
Temperature Range (°C) 0 to 70, -40 to 85
Package QFN-32
Show more

The XR32430 is a 3 driver/ 5 receiver RS-232 transceiver. This product is intended for portable or hand-held applications such as notebook and palmtop computers. The XR32430EB features slew-rate limited outputs for reduced crosstalk and EMI. The XR32430EH is optimized for mid speed applications, with data rates up to 460Kbps. The XR32430EU is optimized for high speed designs with data rates up to 1Mbps, easily meeting the demands of high speed RS-232 applications.

The XR32430 uses an internal high-efficiency charge-pump power supply that requires only four 0.1μF capacitors in 3.3V operation. This charge pump combined with MaxLinear's driver architecture allow the XR32430 to deliver compliant RS-232 performance from a single power supply ranging from +3.0V to +5.5V.

The AUTO ON-LINE® feature allows the device to automatically "wake-up" during a shutdown state when an RS-232 cable is connected and a connected peripheral is turned on. Otherwise, the device automatically shuts itself down drawing less than 1μA.

  • Small 5mm x 5mm 32-pin QFN package
  • AUTO ON-LINE circuitry automatically wakes up from a 1µA shutdown
  • Interoperable with EIA/TIA-232 and adheres to EIA/TIA-562 down to a +2.7V power source
  • Enhanced ESD Specifications:
    • ±15kV Human Body Model
    • ±15kV IEC1000-4-2 Air Discharge
    • ±8kV IEC1000-4-2 Contact Discharge
  • 250Kbps/460Kbps/1Mbps min transmission rates (speed grades B/H/U)
  • Meets true EIA/TIA-232-F Standards from a +3.0V to 5.5V power supply
  • Regulated Charge Pump yields stable RS-232 Outputs regardless of VCC variations
  • -40°C to 85°C ambient operating temperature

  • Industrial and Single Board Computers
  • Industrial and Process Control Equipment
  • Point-Of-Sales Equipment
  • Building Security and Automation

Documentation & Design Tools

Type Title Version Date File Size
Data Sheets XR32430/XR32431 3-Driver/5-Receiver Intelligent RS-232 Transceiver with 1.65V-5.5V Interface 1A September 2014 971.1 KB
Application Notes RS-232 and RS-485 PCB Layout Application Note R00 December 2022 2.8 MB
Application Notes ANI-10, Charge Pump Capacitor Selection Guide for 3V RS-232 Products B December 2006 71.8 KB
Product Brochures Interface Brochure November 2023 3.7 MB
Register for a myMxL account or Login to myMxL to view all Technical Documentation & Design Tools.

Parts & Purchasing

Part Number Pkg Code Min Temp Max Temp Status Suggested Replacement PDN
XR32430EBCR-F QFN32 5x5 OPT1 0 70 OBS XR32430EBER-F
XR32430EBCRTR-F QFN32 5x5 OPT1 0 70 OBS XR32430EBER-F
XR32430EBER-F QFN32 5x5 OPT1 -40 85 OBS SP3243EUER-L/TR
XR32430EBERTR-F QFN32 5x5 OPT1 -40 85 OBS XR32430EBER-F
XR32430EHCR-F QFN32 5x5 OPT1 0 70 OBS XR32430EUCRTR-F
XR32430EHCRTR-F QFN32 5x5 OPT1 0 70 OBS XR32430EUCRTR-F
XR32430EUCR-F QFN32 5x5 OPT1 0 70 OBS XR32430EUCRTR-F
XR32430EUCRTR-F QFN32 5x5 OPT1 0 70 OBS SP3243EUER-L/TR
Show obsolete parts
Part Status Legend
Active - the part is released for sale, standard product.
EOL (End of Life) - the part is no longer being manufactured, there may or may not be inventory still in stock.
CF (Contact Factory) - the part is still active but customers should check with the factory for availability. Longer lead-times may apply.
PRE (Pre-introduction) - the part has not been introduced or the part number is an early version available for sample only.
OBS (Obsolete) - the part is no longer being manufactured and may not be ordered.
NRND (Not Recommended for New Designs) - the part is not recommended for new designs.

Packaging

Pkg Code Details Quantities Dimensions PDF
QFN32 5x5 OPT1
  • JEDEC Reference: MO-220
  • MSL Pb-Free: L2 @ 260ºC
  • MSL SnPb Eutectic: n/a
  • ThetaJA: 30ºC/W
  • Bulk Pack Style: Canister
  • Quantity per Bulk Pack: 490
  • Quantity per Reel: 3000
  • Quantity per Tube: n/a
  • Quantity per Tray: 490
  • Reel Size (Dia. x Width x Pitch): 330 x 12 x 8
  • Tape & Reel Unit Orientation: Quadrant 1
  • Dimensions: mm
  • Length: 5.00
  • Width: 5.00
  • Thickness: 1.00
  • Lead Pitch: 0.50

Notifications

Distribution Date Description File
12/12/2018 Product Discontinuation Notice
07/21/2017 Qualification of alternate assembly subcon, ANST.
07/11/2017 Product Discontinuation Notification

FAQs & Support

Search our list of FAQs for answers to common technical questions.
For material content, environmental, quality and reliability questions review the Quality tab or visit our Quality page.
For ordering information and general customer service visit our Contact Us page.

Submit a Technical Support Question As a New Question

For RS-232 it is 50 feet (15 meters), or the cable length equal to a capacitance of 2500 pF, at a maximum transmission rate of 19.2kbps. When we reduce the baud rate, it allows for longer cable length. For Example:

 

Baud Rate (bps)

Maximum RS-232 Cable Length (ft)

19200

50

9600

500

4800

1000

2400

3000

 
For RS-485 / RS-422 the data rate can exceed 10Mbps depending on the cable length. A cable length of 15 meters (50 feet) will do a maximum of 10Mbps. A cable length of 1200 meters (4000 feet) will do a maximum of 90kbps over 24 AWG gauge twisted pair cable (with 10 pF/ft). Refer to Annex A TIA/EIA-422-B. Also refer the RS-485 Cable Lengths vs. Data Signaling Rate Application Note (AN-292).
 
 

RS-232 uses both positive and negative voltages for signaling. The RS-232 driver needs a charge pump circuit to generate these signal voltages from a single Vcc supply. Four capacitors are needed to generate the positive (V+ or Vdd) and negative (V- or Vss) voltages.

ESD tests are “destructive tests.” The part is tested until it suffers damage. Therefore parts cannot be 100% tested in production, instead a sample of parts are characterized during the product qualification. The test procedure consists of “zapping” pins with a given voltage using the appropriate model and then running the part through electrical tests to check for functionality or performance degradation.

RS232 is the most widely implemented serial interface in the world. It is commonly installed as the serial port (9 pin or 25 pin) on PCs and has become ubiquitous on literally thousands of other applications. See below for comparisons.
 
Even though RS232 is a very old standard (first standardized in 1962) it is still popular because it is:
- simple, no software stack required, can be used to bring-up microcontrollers or load firmware on a “bare” system
- inexpensive, standard products exist from multiple vendors
- widely understood, support is already built in to most microcontrollers, the basics of serial communication are in most of the textbooks
- performance is adequate for many applications, simple data transfer, text or console ports, diagnostics, peripheral connectivity, etc.
 
However RS232 does have some limitations:
- It is slow by modern standards. Typical data rates are 1200 baud, 9600 baud, 115.2kbaud. High data rate RS232 devices are available up to 1Mbps. Faster speeds are uncommon.
- Signals swing to both positive and negative voltage. This requires an onboard charge pump to generate signals from a single power-supply chip or else multiple positive and negative supply rails.
- High pin-count per function. All signals are unidirectional and the charge pump requires several pins and external capacitors. So small footprint is difficult to achieve. Cables and connectors use more pins and wires than most modern serial protocols.
- Point-to-point only. Signals go from one driver to one receiver. RS232 does not support bi-directional signals or multiple drivers or receivers.
- Limited distance. RS232 uses single-ended signals which makes it difficult to support long cables. Typical RS232 cables are only about 10 meter or less. High speed (1Mbps) are typically less than 1 meter. The wide driver signal swing makes crosstalk a problem. Unbalanced signals with a shared ground reference are less able to withstand ground shifts between driver and receiver.
- Comparatively high power consumption. The wide signal swing takes quite a bit of power. By the RS232, signals idle at mark-state and receivers have typical 5kΩ impedance to ground, therefore drivers are constantly sourcing current even while idle. Many later RS232 transceivers’ feature shutdown modes or automatic power saving features (such as Auto On-Line, Auto On-Line Plus, Intelligent charge pumps, etc.). However some of the most commoditized devices lack any shutdown function.
 
RS485 overcomes most of the limitations of RS232 and is an excellent complement to RS232.
- RS485 uses differential signaling and is capable of much higher data rates (up to 20Mbit/sec)
- Differential signals also allow RS485 to communicate over 1200 meter cable lengths. Longer runs are possible with some careful system optimization.
- Bi-directional and multi-drop operation. RS485 can be used to build multidrop networks with many transmitters and many receivers.
- Balanced differential signalling also makes RS485 highly immune to noise. On twisted-pair cables a noise signal will couple equally to both wires in the pair and be ignored by the differential receiver.
 
RS485 is found mainly in industrial, telecom and commercial applications and is not as widespread in the consumer
or PC world. Therefore it is not seen as often as RS232.
 
Also the RS485 protocol standard defines only the electrical characteristics of the interface. The physical and logical implementations are left up to the user. Different connectors, different methods for bus-arbitration and data framing all exist under a wide variety of implementations. RS485 has also been used as the foundation for many proprietary or semi-proprietary standards. Therefore interoperability between RS485 based interfaces is not always as simple as with RS232.

ESD is caused by static electricity. In order for an ESD event to occur there must be a buildup of static charge. Very high charge levels are actually quite rare. In a normal factory environment, taking basic ESD precautions (grounding-straps, anti-static smocks, ionizers, humidity control, etc.) static levels can be kept below a few tens of volts. In an uncontrolled environment, like an office, static levels rarely get above 2000 volts. Under some worstcase conditions (wearing synthetic fabrics, rubbing against synthetic upholstered furniture, extremely low humidity)
levels can go as high as 12 to 15 thousand volts. Actually to get to 15000 volts or higher you would need to be in an uncomfortably dry environment (humidity below 10%) otherwise static charge will naturally dissipate through corona discharge. It would definitely be considered a “bad hair day.” Humans can generally feel a static shock only above 3000 volts. A discharge greater than 4000 volts can cause an audible “pop.” But repeated lower level discharges can be imperceptible and still may have a cumulative damaging effect on sensitive ICs. All ICs, even those with robust protection, can be damaged if they are hit hard enough or often enough.

Most ICs in a typical system are at greatest risk of ESD damage in the factory when the PCB is assembled and the system is being built. After the system is put together they are soldered onto the PCB and shielded within a metal or plastic system enclosure. Interface ICs are designed to attach to an external connector that could be exposed to ESD when a cable is plugged in or when a person or object touches the connector. These interface pins are most likely to see ESD exposure and therefore benefit from additional protection.

Actually the letter “E” could have two different meanings, depending on where it is in the part number. Most of our interface devices are available in different temperature grades. Commercial temperature (0 to 70C) has a “C” after the numeric part number. Industrial-extended temperature (-40 to +85C) use the letter E. So for example SP485CN is commercial and SP485EN is industrial. The second letter indicates the package type, in this case N for narrow-SOIC. Another E in the suffix indicates that this device has enhanced ESD protection, typically of ±15000Volts on the interface pins. Devices that do not have the enhanced ESD still contain built-in ESD protection of at least ±2000Volts. For example the SP485ECN is ESD rated up to ±15kV, and the SP485CN is rated for ±2kV HBM.

The -F suffix indicates ROHS / Green compliance:
https://www.exar.com/quality-assurance-and-reliability/lead-free-program

Yes, the center pad should be connected to ground with a minimum of 5 vias to the GND plane (one at each corner and one in the middle). It is common to use 9 vias to GND (3 rows of 3 vias inside the pad). This helps thermal dissipation / conduction and electrical requirements for the device.

Visit the product page for the part you are interested in.  The part's status is listed in the Parts & Purchasing section.  You can also view Product Lifecycle and Obsolescence Information including PDNs (Product Discontinuation Notifications).
 
To visit a product page, type the part into the search window on the top of the MaxLinear website.
 
In this example, we searched for XRA1201.  Visit the product page by clicking the part number or visit the orderable parts list by clicking "Orderable Parts". 
 
 
 

 

  

The Parts & Purchasing section of the product page shows the Status of all orderable part numbers for that product.  Click Show obsolete parts, to see all EOL or OBS products.