40V 1.5A Synchronous Step-Down COT Regulator ## **Description** The XR76201 is a synchronous step-down regulator combining the controller, drivers, bootstrap diode and MOSFETs in a single package for point-of-load supplies. The XR76201 is capable of supplying steady state loads of 1.5A. A wide 5V to 40V input voltage range allows for single supply operation from 12V battery systems required to withstand load dump, industry standard 24V ±10%, 18V to 36V, and rectified 18VAC and 24VAC rails. With a proprietary emulated current mode Constant On-Time (COT) control scheme, the XR76201 provides extremely fast line and load transient response using ceramic output capacitors. They require no loop compensation, simplifying circuit implementation and reducing overall component count. The control loop also provides 0.05% load and 0.15% line regulation and maintains constant operating frequency. A selectable power saving mode allows the user to operate in Discontinuous Conduction Mode (DCM) at light current loads, thereby significantly increasing the converter efficiency. A host of protection features, including overcurrent, over temperature, short-circuit and UVLO, helps achieve safe operation under abnormal operating conditions. ## **FEATURES** - Controller, drivers, bootstrap diode and MOSFETs integrated in one package - 1.5A step-down regulator - Wide 5V to 40V input voltage range - >0.6V adjustable output voltage - Proprietary constant on-time control - No loop compensation required - Stable ceramic output capacitor operation - Programmable 100ns to 1µs on-time Constant 400kHz to 800kHz frequency - Selectable CCM or CCM / DCM - CCM / DCM for high efficiency at light-load - CCM for constant frequency at light-load - Programmable hiccup current limit with thermal compensation - Precision enable and Power Good flag - Programmable soft-start - 30-pin 5mm x 5mm QFN package #### **APPLICATIONS** - Automotive systems - Industrial - Military Ordering Information - back page Figure 1. Typical Application Figure 2. Line Regulation ## **Absolute Maximum Ratings** Stresses beyond the limits listed below may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. | PV _{IN} , V _{IN} 0.3V to 43V | PGOOD, VCC, TON, SS, EN, FB | |---|--| | V _{CC} 0.3V to 6.0V | Switching frequency 400kHz to 800kHz ⁽³⁾ | | BST0.3V to 48V ⁽¹⁾ | Junction temperature range40°C to 125°C | | BST-SW0.3V to 6V | JEDEC51 package thermal resistance, θ_{JA} 28°C/W | | SW, ILIM1V to 43V ⁽¹⁾⁽²⁾ | Package power dissipation at 25°C3.6W | | ALL other pins0.3V to VCC + 0.3V | | | Storage temperature65°C to 150°C | .5 8 | | Junction temperature | thi we | | Power dissipation Internally limited | in the | | Lead temperature (soldering, 10 sec) | 69 . Kog | | ESD rating (HBM - Human Body Model) | the thio hat the difference of the control c | | Electrical Characteristics | | | Unless otherwise noted: $T_J = 25^{\circ}\text{C}$, $V_{IN} = 24\text{V}$, BST = V_{CC} , State the full operating temperature range are denoted by a \bullet | AGND = PGND = 0V, C_{VCC} = 4.7 μ F. Limits applying over | | Symbol Parameter Conditions | • Min Typ Max Units | | Power Supply Characteristics | | ## **Operating Conditions** | PV _{IN} 5V t | o 40V | |--|--------------------| | V _{IN} 5V to | o 40V | | SW, ILIM1V to | 40V ⁽¹⁾ | | PGOOD, VCC, TON, SS, EN, FB | 5.5V | | Switching frequency 400kHz to 800 | kHz ⁽³⁾ | | Junction temperature range40°C to | 125°C | | JEDEC51 package thermal resistance, $\theta_{\text{JA}}28$ | 3°C/W | | Package power dissipation at 25°C | 3.6W | | Symbol | Parameter | Conditions | • | Min | Тур | Max | Units | |----------------------|---|--|---|------|------|------|-------| | Power Su | pply Characteristics | et o | | | | | | | V _{IN} | Input voltage range | V _{GC} regulating | • | 5.5 | | 40 | V | | I _{VIN} | V _{IN} input supply current | Not switching, V _{IN} = 24V, V _{FB} = 0.7V | • | | 0.7 | 2 | mA | | I _{VIN} | V _{IN} input supply current | $f = 300kHz, R_{ON} = 215k\Omega, V_{FB} = 0.58V$ | | | 12 | | mA | | I _{OFF} | Shutdown current | Enable = 0V, V _{IN} = 12V | | | 1 | | μΑ | | Enable ar | Enable and Under-Voltage Lock-Out UVLO | | | | | | | | V _{IH_EN_1} | EN pin rising threshold | | • | 1.8 | 1.9 | 2.0 | V | | V _{EN_H_1} | EN pin hysteresis | | | | 70 | | mV | | V _{IH_EN_2} | EN pin rising threshold for DCM/CCM operation | | • | 2.8 | 3.0 | 3.1 | V | | V _{EN_H_2} | EN pin hysteresis | | | | 100 | | mV | | | V _{CC} UVLO start threshold, rising edge | | • | 4.00 | 4.25 | 4.40 | V | | | V _{CC} UVLO hysteresis | | | | 230 | | mV | # **Electrical Characteristics (Continued)** Unless otherwise noted: $T_J = 25$ °C, $V_{IN} = 24V$, $BST = V_{CC}$, SW = AGND = PGND = 0V, $C_{VCC} = 4.7\mu F$. Limits applying over the full operating temperature range are denoted by a •. | Symbol | Parameter | Conditions | • | Min | Тур | Max | Units | |-----------------------|----------------------------------|---|----|-------|-------|-------|-------| | Reference Voltage | | | | | | | | | V | Deference veltore | V F FV to 40V V regulating | | 0.596 | 0.600 | 0.604 | V | | V _{REF} | Reference voltage | $V_{IN} = 5.5V$ to 40V, V_{CC} regulating | • | 0.594 | 0.600 | 0.606 | V | | | DC line regulation | CCM, closed loop, V_{IN} = 5.5V to 40V, applies to any C_{OUT} | | | ±0.15 | | % | | | DC load regulation | CCM, closed loop, applies to any C _{OUT} | | | ±0.05 | | % | | Programn | mable Constant On-Time | | .5 | 6 | | | | | t _{ON1} | On-time 1 | $R_{ON} = 6.04k\Omega, V_{IN} = 24V$ | | 85 | 100 | 117 | ns | | | f corresponding to on-time 1 | $V_{OUT} = 1.8V$, $V_{IN} = 24V$, $R_{ON} = 6.04k\Omega$, $I_{OUT} = 1.5A$ | C | 710 | 830 | 980 | kHz | | t _{ON(MIN)} | Minimum programmable on-time | $R_{ON} = 6.04k\Omega$, $V_{IN} = 24V$ | | 85 | 100 | 117 | ns | | t _{ON2} | On-time 2 | $R_{ON} = 14k\Omega$, $V_{IN} = 24V$ | • | 174 | 205 | 236 | ns | | t _{ON3} | On-time 3 | $R_{ON} = 35.7k\Omega$, $V_{IN} = 24V$ | • | 407 | 479 | 550 | ns | | | f corresponding to on-time 2 | $V_{OUT} = 1.8V$, $V_{IN} = 24V$, $P_{ON} = 14k\Omega$, $I_{OUT} = 1.5A$ | • | 345 | 400 | 470 | kHz | | | Minimum off-time | 10 ¹ 21 10 ¹ | • | | 250 | 350 | ns | | Diode Em | nulation Mode | all de d' | | | | | | | | Zero crossing threshold | DC value measured during test | | | -2 | | mV | | Soft-Start | | 101 100 210 | | | | | | | | SS charge current | £ 10 0 | • | -14 | -10 | -6 | μΑ | | | SS discharge current | Fault present | • | 1 | | | mA | | V _{CC} Linea | V _{CC} Linear Regulator | | | | | | | | | V _{CC} output voltage | V _{IN} = 6V to 40V, I _{LOAD} = 0 to 30mA | • | 4.8 | 5.0 | 5.2 | V | | vCC outhor voltage | | V _{IN} 5V, I _{LOAD} = 0 to 20mA | • | 4.51 | 4.7 | | V | | Power Go | Power Good Output | | | | | | | | | Power good threshold | | | -10 | -6.9 | -5 | % | | | Power good hysteresis | | | | 1.6 | 4 | % | | | Power good sink current | | | 1 | | | mA | ## **Electrical Characteristics (Continued)** Unless otherwise noted: $T_J = 25$ °C, $V_{IN} = 24V$, $BST = V_{CC}$, SW = AGND = PGND = 0V, $C_{VCC} = 4.7 \mu F$. Limits applying over the full operating temperature range are denoted by a •. | Symbol | Parameter | Conditions | • | Min | Тур | Max | Units | | |--|--|---|----|------------|-----|-----|-------|--| | Protection: | Protection: OCP, OTP, Short-Circuit | | | | | | | | | | Hiccup timeout | | | | 110 | | ms | | | | I _{LIM} pin source current | | | 45 | 50 | 55 | μΑ | | | | I _{LIM} current temperature coefficient | | | | 0.4 | | %/°C | | | | OCP comparator offset | | • | -8 | 0 | 8 | mV | | | | Current limit blanking | GL rising > 1V | | , <u> </u> | 100 | | ns | | | | Thermal shutdown threshold ⁽¹⁾ | Rising temperature | 10 | 10 | 150 | | °C | | | | Thermal hysteresis ⁽¹⁾ | · · · | | 0 | 15 | | °C | | | | VSCTH feedback pin short-circuit threshold | Percent of V _{REF} , short-circuit is active after PGOOD is asserted | 10 | 50 | 60 | 70 | % | | | Output Pov | wer Stage | iol, all | | | | | | | | D | High-side MOSFET R _{DSON} | La = 10 | | | 115 | 160 | mΩ | | | R _{DSON} | Low-side MOSFET R _{DSON} | I _{DS} = 1A | | | 40 | 59 | mΩ | | | l _{OUT} | Maximum output current | 18 60 83 | • | 1.5A | | | А | | | | Maximum ambient temperature at | $V_{IN} = 24V$, $V_{OUT} = 5V$, $I_{OUT} = 1.5A$, $f = 700kHz$ | | | | 100 | °C | | | | continuous load | $V_{IN} = 12V$, $V_{OUT} = 5V$, $I_{OUT} = 1.5A$, $f = 600$ kHz | | | | 110 | °C | | | Maximum ambient temperature at continuous load The l | | | | | | | | | ^{1.} Guaranteed by design. # **Pin Configuration, Top View** ## **Pin Functions** | Pin Number | Pin Name | Туре | Description | | | |--------------------------|----------|-------|---|--|--| | 1 | ILIM | А | Overcurrent protection programming. Connect with a resistor to SW. | | | | 2 | EN/MODE | I | Precision enable pin. Pulling this pin above 1.9V will turn the regulator on and it will operate in CCM. If the voltage is raised above 3.0V, then the regulator will operate in DCM / CCM depending on load. | | | | 3 | TON | А | Constant on-time programming pin. Connect with a resistor to AGND. | | | | 4 | SS | А | Soft-start pin. Connect an external capacitor between SS and AGND to program the soft-start rate based on the 10µA internal source current. | | | | 5 | PGOOD | O, OD | Power-good output. This open-drain output is pulled low when V _{OUT} is outside the regulation. | | | | 6 | FB | A | Feedback input to feedback comparator. Connect with a set of resistors to VOUT and AGND in order to program V _{OUT} . | | | | 7, 10,
AGND Pad | AGND | А | Signal ground for control circuitry. Connect AGND Pad with a short trace to pins 7 and 10. | | | | 8 | VIN | А | Supply input for the regulator's LDO. Normally it is connected to PVIN. | | | | 9 | VCC | А | The output of regulator's LDO. For operation using a 5V rail, VCC should be shorted to VIN. | | | | 11-14, 20, 29,
SW Pad | SW | PWR | Switch node. The drain of the low-side N-channel MOSFET. The source of the high-side MOSFET is wire-bonded to the SW Pad. Pins 20 and 29 are internally connected to SW pad. | | | | 15-19,
PGND Pad | PGND | PWR | Ground of the power stage. Should be connected to the system's power ground plane. The source of the low-side MOSFET is wire-bonded to PGND Pad. | | | | 21-28,
PVIN Pad | PVIN | PWR | Input voltage for power stage. The drain of the high-side N-channel MOSFET. | | | | 30 | BST | А | High-side driver supply pin. Connect a bootstrap capacitor between BST and pin 29. | | | #### NOTE: A = Analog, I = Input, O = Output, OD = Open Drain, PWR = Power. ## **Typical Performance Characteristics** Unless otherwise noted: V_{IN} = 24V, V_{OUT} = 3.3V, I_{OUT} = 1.5A, f = 600kHz, T_A = 25°C. The application circuit is from the Application Information section. # **Typical Performance Characteristics (Continued)** Unless otherwise noted: V_{IN} = 24V, V_{OUT} = 3.3V, I_{OUT} = 1.5A, f = 600kHz, T_A = 25°C. The application circuit is from the Application Information section. ## **Typical Performance Characteristics (Continued)** Unless otherwise noted: $V_{IN} = 24V$, $V_{OUT} = 3.3V$, $I_{OUT} = 1.5A$, f = 600kHz, $T_A = 25^{\circ}C$. The application circuit is from the Application Information section. ## **Typical Performance Characteristics (Continued)** #### Efficiency Unless otherwise noted: $T_{AMBIENT} = 25^{\circ}C$, no air flow, $L = 6.8 \mu H$, inductor losses are included, application circuit is from the Application Information section. # **Functional Block Diagram** ## **Applications Information** #### **Functional Description** XR76201 is a synchronous step-down, proprietary emulated current-mode Constant On-Time (COT) regulator. The ontime, which is programmed via R_{ON} , is inversely proportional to $V_{\rm IN}$ and maintains a nearly constant frequency. The emulated current-mode control is stable with ceramic output capacitors. Each switching cycle begins with GH signal turning on the high-side (control) FET for a preprogrammed time. At the end of the on-time, the high-side FET is turned off and the low-side (synchronous) FET is turned on for a preset minimum time (250ns nominal). This parameter is termed Minimum Off-Time. After the Minimum Off-Time, the voltage at the feedback pin FB is compared to an internal voltage ramp at the feedback comparator. When V_{FB} drops below the ramp voltage, the high-side FET is turned on and the cycle repeats. This voltage ramp constitutes an emulated current ramp and makes possible the use of ceramic capacitors, in addition to other capacitor types, for output filtering. ### Enable/Mode Input (EN/MODE) EN/MODE pin accepts a tri-level signal that is used to control turn on / off. It also selects between two modes of operation: 'Forced CCM' and 'DCM / CCM'. If EN/MODE is pulled below 1.8V, the regulator shuts down. A voltage between 2.0V and 2.8V selects the Forced CCM mode, which will run the regulator in continuous conduction at all times. A voltage higher than 3.1V selects the DCM / CCM mode, which will run the regulator in discontinuous conduction at light loads. #### Selecting the Forced CCM Mode In order to set the regulator to operate in Forced CCM, a voltage between 2.0V and 2.8V must be applied to EN/MODE. This can be achieved with an external control signal that meets the above voltage requirement. Where an external control is not available, the EN/MODE can be derived from $V_{\rm IN}.$ If $V_{\rm IN}$ is well regulated, use a resistor divider and set the voltage to 2.5V. If $V_{\rm IN}$ varies over a wide range, the circuit shown in Figure 22 can be used to generate the required voltage. Note that at $V_{\rm IN}$ of 5.5V and 40V, the nominal Zever voltage is 4.0V and 5.0V respectively. Therefore for $V_{\rm IN}$ in the range of 5.5V to 40V, the circuit shown in Figure 22 will generate the $V_{\rm EN}$ required for Forced CCM. ### Selecting the DCM / CCM Mode In order to set the regulator operation to DCM / CCM, a voltage between 3.1V and 5.5V must be applied to the EN/MODE pin. If an external control signal is available, it can be directly connected to EN/MODE. In applications where an external control is not available, the EN/MODE input can be derived from $V_{\text{IN}}.$ If V_{IN} is well regulated, use a resistor divider and set the voltage to 4V. If V_{IN} varies over a wide range, the circuit shown in Figure 23 can be used to generate the required voltage. $\label{eq:Figure 22.} Figure 22.$ Selecting Forced CCM by Deriving EN/MODE from V_{IN} Figure 23. Selecting DCM/CCM by Deriving EN/MODE from V_{IN} ## **Applications Information (Continued)** ## Programming the On-Time The on-time t_{ON} is programmed via resistor R_{ON} according to following equation: $$R_{ON} = \frac{V_{IN} \times [t_{ON} - (2.5 \times 10^{-8})]}{3.05 \times 10^{-10}}$$ A graph of t_{ON} vs. R_{ON} , using the above equation, is compared to typical test data in Figure 5. The graph shows that calculated data matches typical test data within 3%. The t_{ON} corresponding to a particular set of operating conditions can be calculated based on empirical data from: $$t_{ON} = \frac{v_{OUT}}{v_{IN} \times 0.97 \text{ x f}}$$ Where: ■ f is the desired switching frequency at 1.5A Substituting for t_{ON} in the first equation we get: $$R_{ON} = \frac{\left(\frac{V_{OUT}}{0.97 \times f}\right) - [(2.5 \times 10^{-8}) \times V_{IN}]}{(3.05 \times 10^{-10})}$$ Now R_{ON} can be calculated in terms of operating conditions V_{IN} , V_{OUT} , and f using the above equation. At $V_{IN} = 24V$, $I_{OUT} = 1.5A$ we get the following R_{ON} : | V _{OUT} (V) | f (kHZ) | R _{ON} (kΩ) | |----------------------|---------|----------------------| | 12 | 800 | 48.7 | | 5 | 700 | 22.2 | | 3.3 | 600 | 16.6 | | 1.8 | 400 | 13.20 | #### Overcurrent Protection (OCP) If load current exceeds the programmed overcurrent I_{OCP} for four consecutive switching cycles, the module enters the hiccup mode of operation. In hiccup, the MOSFET gates are turned off for 110ms (hiccup timeout). Following the hiccup timeout, a soft-start is attempted. If OCP persists, the hiccup timeout will repeat. The module will remain in hiccup mode until load current is reduced below the programmed I_{OCP} . In order to program the overcurrent protection, use the following equation: $$R_{LIM} = \frac{(I_{OCP} \times 59m\Omega) + 8mV}{I_{LIM}}$$ where: - R_{LIM} is resistor value for programming I_{OCP} - I_{OCP} is the overcurrent threshold to be programmed - 8mV is the OCP comparator maximum offset - I_{LIM} is the internal current that generates the necessary OCP comparator threshold (use 45uA). Note that I_{LIM} has a positive temperature coefficient of 0.4%/°C, Figure 10. This is meant to roughly match and compensate for positive temperature coefficient of the synchronous FET. The above equation is for worst-case analysis and safeguards against premature OCP. Typical value of I_{OCP} , for a given R_{LIM} , will be higher than that predicted by the above equation. A graph of calculated I_{OCP} vs. R_{LIM} is compared to typical I_{OCP} in Figure 9. # Short-Circuit Protection (SCP) Ic the output voltage drops below 60% of its programmed value, the module will enter hiccup mode. Hiccup will persist until short-circuit is removed. The SCP circuit becomes active after PGOOD asserts high. ## Over-Temperature (OTP) The gate of switching FET and synchronous FET are turned off. When die temperature cools down to 135°C, soft-start is initiated and operation resumes. #### Programming the Output Voltage Use an external voltage divider as shown in the Application Circuit to program the output voltage V_{OUT}. $$R_1 = R_2 \times \left(\frac{V_{OUT}}{0.6V} - 1 \right)$$ where: R2 has a nominal value of 2kΩ #### Programming the Soft-Start Place a capacitor C_{SS} between the SS and AGND pins to program the soft-start. In order to program a soft-start time of t_{SS} , calculate the required capacitance C_{SS} from the following equation: $$C_{SS} = t_{SS} \times \frac{10\mu A}{0.6V}$$ 12/17 REV1C ## **Applications Information (Continued)** ## Feed-Forward Capacitor (CFF) A feed-forward capacitor (CFF) may be necessary depending on the Equivalent Series Resistance (ESR) of C_{OUT}. If only ceramic output capacitors are used for COUT, then a CFF is necessary. Calculate CFF from: $$C_{FF} = \frac{1}{2 \times \pi \times R_1 \times 7 \times f_{LC}}$$ where: - R1 is the resistor that is parallel with C_{FF} - f_{LC} is calculated by the equation below: $$f_{LC} = \frac{1}{2 \times \pi \times \sqrt{L \times C_{OUT}}}$$ when using and / or Cout in with higher ESR such as the series, a C_{FF} is not required provided additions are met: The frequency of output filter LC double-pole f_{LC} should be less than 11kHz The frequency of ESR Zero f_{ZERO,ESR} should be at least five times larger than f_{LC} Note that if f_{ZERO,ESR} is less than 5 x f_{LC}, then it is recommended to set the f_{LC} at less than 2kHz C_{FF} is still not required. The product are not be ### Maximum Allowable Voltage Ripple at FB Pin Note that the steady-state voltage ripple at feedback pin FB (V_{FB,RIPPLF}) must not exceed 50mV in order for the regulator to function correctly. If V_{FB,RIPPI} F is larger than 50mV, then COUT should be increased as necessary in order to keep the $V_{FB,RIPPLE}$ below 50mV. ### Feed-Forward Resistor (RFF) FET switching noise may couple to V_{OUT} through the parasitic capacitance across the inductor and to the FB pin via CFF. Excessive noise at FB will cause poor load regulation. To solve this problem, place a resistor RFF in series with C_{FF}. An R_{FF} value up to 2% of R1 is acceptable. REV1C 13/17 # **Applications Information (Continued)** ## **Application Circuit** ## **Mechanical Dimensions** TERMINAL DETAIL NOTE: ALL DIMENSIONS ARE IN MILLIMETERS, ANGLES ARE IN DEGREES. Drawing No.: POD-00000018 Revision: B # **Recommended Land Pattern and Stencil** NOTE: ALL DIMENSIONS ARE IN MILLIMETERS, ANGLES ARE IN DEGREES. Drawing No.: POD-00000018 Revision: B ## Ordering Information(1) | Part Number | Operating Temperature Range | Package | Packaging Method | Lead-Free | | | |-------------|--------------------------------|---------|------------------|--------------------|--|--| | XR76201ELTR | -40°C ≤ T _J ≤ 125°C | QFN 5x5 | Tape and Reel | Yes ⁽²⁾ | | | | XR76201EVB | XR76201 Evaluation Board | | | | | | #### NOTE: - 1. Refer to www.maxlinear.com/XR76201 for most up-to-date Ordering Information. - 2. Visit www.maxlinear.com for additional information on Environmental Rating. ## **Revision History** | Revision | Date | Description | |------------|----------------------------------|--| | 1A | Sept 2016 | Initial Release | | 1B | June 2018 | Update to MaxLinear logo. Update format and Ordering Information. | | 1C | October 2019 | Correct block diagram by changing the input gate into the Hiccup Mode from an AND gate to an OR gate. Update ordering information, Add recommended land pattern and stencil. | | MAXLINEAR | Corporate Headquarters: | an OR gate. Update ordering information. Add recommended land pattern and stencil. | | WIAXLINEAR | 5966 La Place Court
Suite 100 | | MAXLINEAR Corporate Headquarters: 5966 La Place Court Suite 100 Carlsbad, CA 92008 Tel.:+1 (760) 692-0711 Fax: +1 (760) 444-8598 The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by MaxLinear, Inc. MaxLinear, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of MaxLinear, Inc. Maxlinear, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless MaxLinear. Inc. receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of MaxLinear, Inc. is adequately protected under the circumstances MaxLinear, Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from MaxLinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property. MaxLinear, the MaxLinear logo, and any MaxLinear trademarks, MxL, Full-Spectrum Capture, FSC, G.now, AirPHY and the MaxLinear logo are all on the products sold, are all trademarks of MaxLinear, Inc. or one of MaxLinear's subsidiaries in the U.S.A. and other countries. All rights reserved. Other company trademarks and product names appearing herein are the property of their respective owners. © 2016 - 2019 MaxLinear, Inc. All rights reserved