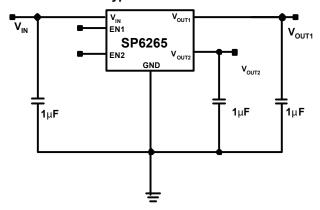

Dual Low-Dropout CMOS Voltage Regulator

Features

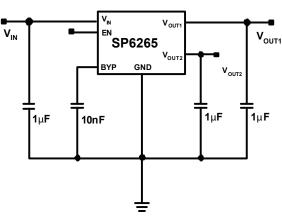
- Very Low Dropout Voltage
- Guaranteed 150mA for Each Output
- Accurate to Within 1.5% for Both Outputs
- Typical 70 μA Quiescent Current
- Over-Temperature Shutdown
- · Current Limiting
- · Noise Reduction Bypass Cap
- · Power-Saving Shutdown Mode
- Available in Lead Free, RoHS Compliant Packaging: 6Pin TSOT-26 & 8Pin DFN

Applications

- Cellular Phones
- Palm / Notebook
- Battery Powered Equipment
- · Handheld Devices


TSOT-26 Top View

DESCRIPTION


The SP6265 dual, low dropout, linear regulators operate up to 5.5V input and deliver up to 150mA/150mA output current per regulator. It has a bypass pin option which allows users to decouple the bandgap reference for reducing the output noise. Low dropout voltage and low quiescent current (70µA typ.) make them ideal for battery powered applications. The SP6265 is available with a wide variety of standard voltage options and can be trimmed to 1.5% accuracy. For protection purposes, SP6265 has a thermnal shutdown feature to prevent device failure under the "worst" operating conditions.

-TYPICAL APPLICATION CIRCUITS

SP6265 without Bypass

SP6265 with Bypass

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

Input Voltage	6V
Output Current	Pp / [2Vin - (Vout1+Vout2)]mA
Output Voltage	GND- 0.3 to Vin+0.3V
ESD Classification	
Ambient Temperature Range (TA)	40°C to 85°C
Junction Temperature Range (TJ)	
Lead Temperature (Soldering, 10 sec)	350°C
Maximum Junction Temperature	150°C

Thermal Resistance θ _{JC}	
TSOT 26	
DFN-8	17°C/W
Thermal Resistance θ _{JA}	
TSOT 26	260°C/W
DFN-8	125°C/W
Internal Power Dissapation PD	
TSOT 26	400mW
DFN-8	125mW

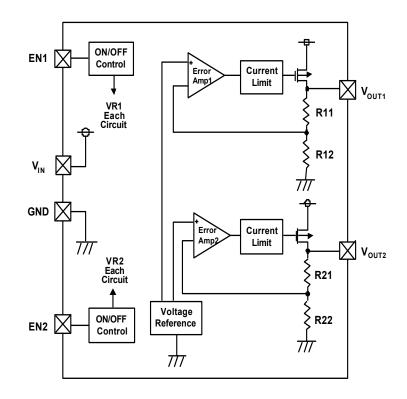
— ELECTRICAL SPECIFICATIONS

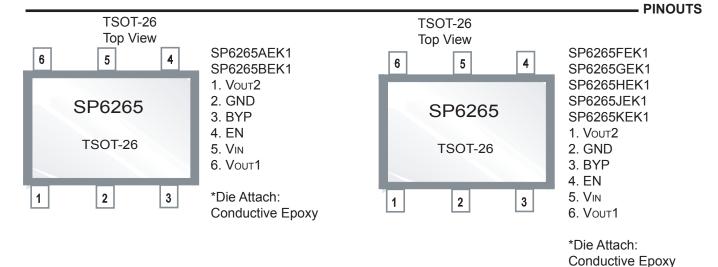
Unless specified: T_J =25°C, V_{IN} =Higher V_{OUT} +1V, I_{OUT1} = I_{OUT2} =1mA, C_{IN} = C_{OUT} =1.0 μ F, V_{EN1} = V_{EN2} = V_{IN} Typical values are at T_J =25°C

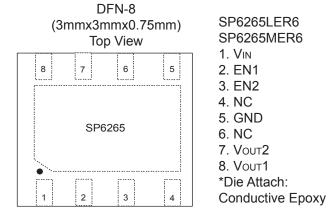
Parameter	Symbol	Test Condition		Min	Тур	Max	Units
IN							
Input Supply Voltage	V _{IN}					5.5	V
Quiescent Current	ΙQ				70	160	μА
OUT1, OUT2							
		I _{OUT} =	1mA	-1.5		1.5	
Output Voltage	Vo	0mA <i<sub>OUT<=150mA V_{OUT}+1V<v<sub>IN<5.5V</v<sub></i<sub>	$T_{J} = 0^{\circ}C \text{ to } +125^{\circ}C$	-2	V _{OUT}	2	%
Line Dec. Latin	DEO	V _{OUT} +1V <v<sub>IN<5.5V,</v<sub>	T _J =25°C	-0.2		0.2	0/ /) /
Line Regulation	REG _{LINE}	I _{OUT} =1mA	$T_J = -40^{\circ}C \text{ to } +125^{\circ}C$	-0.25		0.25	%/V
Load Regulation	REG _{LOAD}	1mA <l<sub>OUT</l<sub>	$T_J = 0^{\circ}C \text{ to } +125^{\circ}C$	-0.005	+0.0025	0.005	%/mA
Dropout Voltage	V _{DROP}	$I_{OUT1} = I_{OUT2} = 150 \text{mA}$ $V_{O} = V_{O(NOM)} - 2\%,$ $V_{O(NOM)} < 2.5 \text{V}$	T _J = 0°C to +125°C			350	mV
Bropout Voltage	VBROF	$I_{OUT1} = I_{OUT2} = 150 \text{mA}$ $V_O = V_{O(NOM)} - 2\%,$ $V_{O(NOM)} > = 2.5 \text{V}$	1, 00 to 1,120 0			300	mV
Current Limit	LIM			180		600	mA
Short Circuit Current	I _{sc}	Each C	hannel		200	350	IIIA
		f=100Hz, C _{BYP} =10nF, l _{OUT} =1mA			55		dB
Ripple Rejection	PSRR	f=1kH _Z , C _{BYP} =10nF, l _{OUT} =1mA			55		
		f=10kHz, C _{BYP} =1			48		
Output Voltage Noise	۵	f=1kHz to 100kHz C _{BYP} =10nF, C _{OUT} =1μF			550		μVRMS
Output Voltage Noise	e _n	f=1kHz to C _{BYP} =10nF,			5.5		μV/√ Hz
EN1, EN2							
Frankla Irraut Threathald	V_{EH}	V _{IN} =2.4V to 5.5V	T _J =-40°C to +125°C	2.4			V
Enable Input Threshold	V_{EL}	V _{IN} =2.4V to 5.5V	1 _J =-40 C to +125 C			0.4	V
	I _{EL}		EN=0V		-1 0.5		μА
EN Input Bias Current	I _{EH}	V _{IN} =5.0V	EN=5V	-1		1	
Shutdown Current	I _{SHDN}	V _{IN} =5.0V, EN1=EN2=0V			0.3	1	† ·
ВҮР		,		ļ		ļ	
Start-Up Rise Time		C _{BYP} =10nF			1.25		ms
Over Temperature Protection		3		<u>. </u>	!	!	!
Over Temperature Shutdown	OTS				150		°C
Over Temperature Hysteresis	OTH				20		°C

Note1: V_{IN(min)}= V_{OUT2} + V_{Dropout}

SP6265A, B TSOT-26 Package with Bypass


Pin Number	Pin Name	Description
1	Vouт2	Regulator 2 Output. Sources up to 150mA continous current. Bypass with a 1 μ F (<0.5 Ω typ ESR) capacitor to GND
2	GND	Ground. This pin alos functions as heatsink. Solder to a large pad or the circuit-board ground plane to maximize thermal dissapation.
3	BYP	Reference Noise Bypass. Bypass with a low leakage 10nF ceramic capacitor for reduced noise at borth outputs.
4	EN	Shutdown control input, active low. Tie this pin to or above 2.4V to enable the device. Tie this pin to or below 0.4V to turn off the device.
5	Vin	Regulator Input. Supply voltage can range from [Vout2 + 1V] to 5.5V. This input also supplies the on-chip reference. Bypass with a 1µF to GND.
6	Vоит1	Regulator 1 Output. Sources up to 150mA continious current. Bypass with a $1\mu F$ (<0.5 Ω typ ESR) capacitor to GND.


SP6265,G,H,J,K TSOT-26 Package without Bypass


Pin Number	Pin Name	Description
1	Vout2	Regulator 2 Output. Sources up to 150mA continous current. Bypass with a 1 μ F (<0.5 Ω typ ESR) capacitor to GND
2	GND	Ground. This pin alos functions as heatsink. Solder to a large pad or the circuit-board ground plane to maximize thermal dissapation.
3	EN1	Shutdown 1 control input, active low. Tie this pin to or above 2.4V to enable the device. Tie this pin to or below 0.4V to turn off the device.
4	EN2	Shutdown 2 control input, active low. Tie this pin to or above 2.4V to enable the device. Tie this pin to or below 0.4V to turn off the device.
5	VIN	Regulator Input. Supply voltage can range from [Vout2 + 1V] to 5.5V. This input also supplies the on-chip reference. Bypass with a 1µF to GND.
6	Vouт1	Regulator 1 Output. Sources up to 150mA continious current. Bypass with a 1 μ F (<0.5 Ω typ ESR) capacitor to GND.

SP6265,L,M DFN Package without Bypass

Pin Number	Pin Name	Description
1	VIN	Regulator Input. Supply voltage can range from [Vout2 + 1V] to 5.5V. This input also supplies the on-chip reference. Bypass with a 1µF to GND.
2	EN1	Shutdown 1 control input, active low. Tie this pin to or above 2.4V to enable the device. Tie this pin to or below 0.4V to turn off the device.
3	EN2	Shutdown 2 control input, active low. Tie this pin to or above 2.4V to enable the device. Tie this pin to or below 0.4V to turn off the device.
4	NC	Not Connected
5	GND	Ground. This pin alos functions as heatsink. Solder to a large pad or the circuit-board ground plane to maximize thermal dissapation.
6	NC	Not Connected
	Vouт2	Regulator 2 Output. Sources up to 150mA continious current. Bypass with a 1 μ F (<0.5 Ω typ ESR) capacitor to GND.
6	Vоит1	Regulator 1 Output. Sources up to 150mA continious current. Bypass with a 1 μ F (<0.5 Ω typ ESR) capacitor to GND.

THEORY OF OPERATION

The SP6265 is a low-dropout, low quiescent-current linear regulator designed primarily for battery-powered applications. These parts are available with preset output voltage ranging from 1.8V to 3.3V, and the parts can supply loads up to 150mA.

Shutdown SP6265A & SP6265B

The SP6265A and SP6265B have a single shutdown control input (EN). Drive EN low to shutdonw boh outputs, reducing supply current to 0.3µA. Connect EN to a logic-high, or IN, for normal operation.

SP6265F-SP6265M

The SP6265F-SP6265M have independent shutdown control inputs (EN1 and EN2). Drive EN1 low to shutdown Vout1. Drive EN2 low to shutdown Vout2. Drive both EN1 and EN2 to shut down the entire chip, reducing supply current to 0.3µA. Connect both EN1 and EN2 to a logic-high, or IN, for normal operation.

Internal P-Channel Pass Transistor

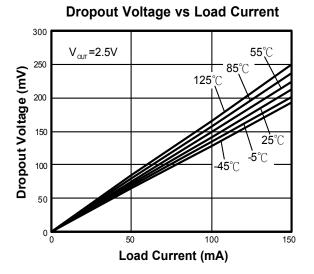
The SP6265 features two 1Ω P-Channel MOSFET pass transistors. A P-Channel MOSFET provides several advantages over simialr designs using PNP pass transistors, inculding longer battery life. It requires no base drive, which reduces quiescent current significantly. The SP6265 only consumes $70\mu\text{A}$ of quiescent surrent whether in droput, light-load, or heavy load applications.

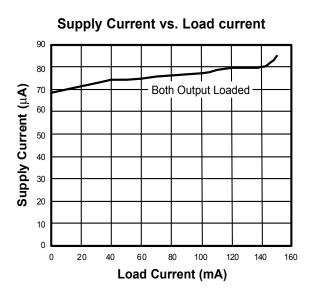
Current Limit

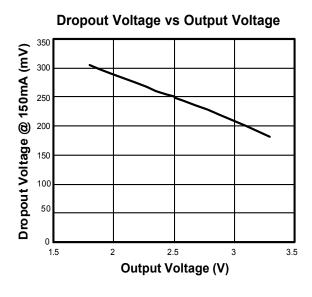
The SP6265 contains two independent current limiters, one for each regulator, which monitor and control the pass transistor's gate voltage, limiting the guaranteed maximum output curent to 180mA minimum. The outputcan be shorted to ground for an indefinate time without damaging the part.

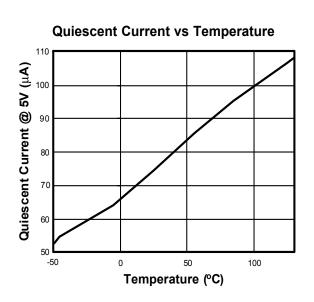
Thermal-Overload Protection

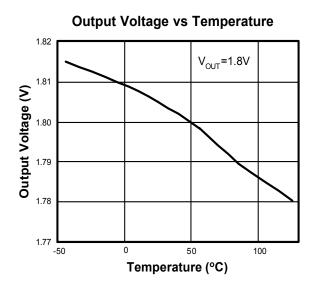
Thermal-Overload protection limits total power dissapation in the SP6265. When the juntion temperature exceeds T_j = 150°C, the thermal sensor signals the shutdown logic, turning off the pass transistor and allowing the IC to cool.

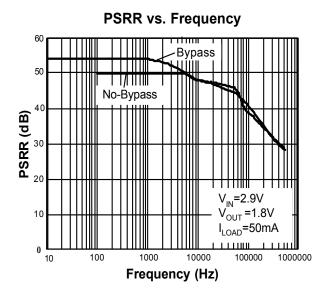

Capacitor Selection and Regulator Stability

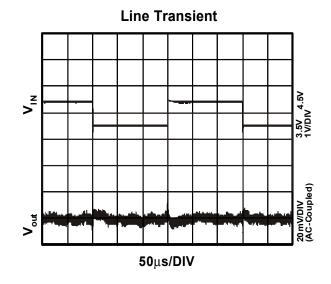

Use a $1\mu F$ capacitor in the outputs. Larger input capacitor values and lower ESRs provide better supply noise rejection and line transient response.

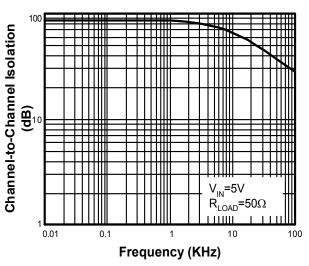

PSRR and Operation from sources other than Batteries

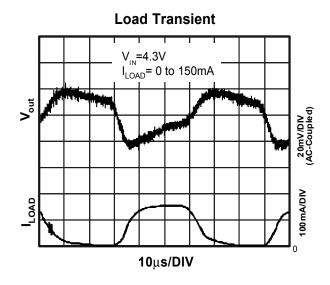

The SP6265 is designed to deliver low dropout voltages and low quiescent current in battery powered systems. Power-supply rejection is 54dB at low frequencies. (see the PSRR vs. Frequency graph)

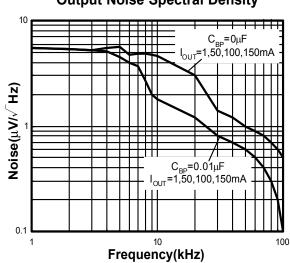

Quiescent Current vs Input Voltage 140 125°C Quiescent Current (uA) 85°C 100 80 60 40 20 0.5 2.5 3 3.5 5 5.5 0 1 Input Voltage (V)

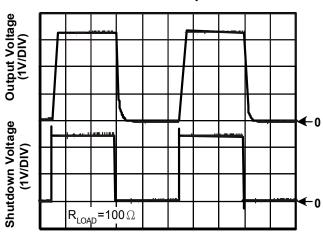






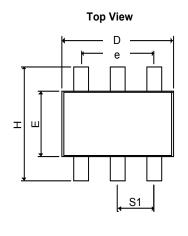


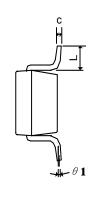


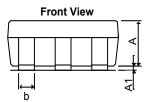

Output Noise Spectral Density

Load Transient Near Dropout

Shutdown Response

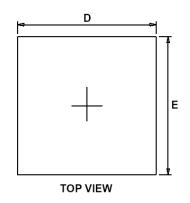


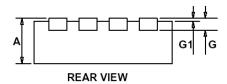

PACKAGE: 6 PIN TSOT

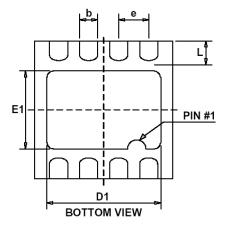

Package Dimensions

TSOT-26

Side View






SYMBOLS	MILLIMETERS		INCHES		
31 WIBOLS	MIN	MAX	MIN	MAX	
A+A ₁	0.90	1.25	0.0354	0.0492	
b	0.30	0.50	0.0118	0.0197	
С	0.09	0.25	0.0035	0.0098	
D	2.70	3.10	0.1063	0.1220	
E	1.40	1.80	0.0551	0.0709	
е	1.90	BSC	0.0748	0 BSC	
Н	2.40	3.00	0.09449	0.11811	
L	0.35	BSC	0.0138BSC		
θ1	0°	10°	0°	10°	
S ₁	0.95	BSC	0.0374BSC		

■ Package Dimension

DFN-8 (3mmx3mmx0.75mm)

SYMBOLS	MILLIN	IETERS	INCHES		
STWIBOLS	MIN	MAX	MIN	MAX	
Α	0.700	0.800	0.028	0.031	
D	2.900	3.100	0.114	0.122	
Е	2.900	3.100	0.114	0.122	
e	0.600	0.700	0.024	0.028	
D1	2.200	2.400	0.087	0.094	
E1	1.400	1.600	0.055	0.063	
b	0.200	0.320	0.008	0.013	
L	0.375	0.575	0.015	0.023	
G	0.153	0.253	0.0060	0.010	
G1	0.000	0.050	0.0000	0.002	

Part Number	Voltage	Pin3/ Pin4 Trait	Voltage Accuracy	Operating Temperature Range	Package	Marking*	Packing Quantity
SP6265AEK1-L/TR	V1=1.8V V2=2.5V	Bypass/ Enable	1.5%	-40°C to +85°C	TSOT-26	X9WW	3,000 Tape & Reel
SP6265BEK1-L/TR	V1=1.8V V2=2.8V	Bypass/ Enable	1.5%	-40°C to +85°C	TSOT-26	Y9WW	3,000 Tape & Reel
SP6265FEK1-L/TR	V1=1.8V V2=2.5V	Dual Enable	1.5%	-40°C to +85°C	TSOT-26	DAWW	3,000 Tape & Reel
SP6265GEK1-L/TR	V1=1.8V V2=2.8V	Dual Enable	1.5%	-40°C to +85°C	TSOT-26	EAWW	3,000 Tape & Reel
SP6265HEK1-L/TR	V1=1.8V V2=3.3V	Dual Enable	1.5%	-40°C to +85°C	TSOT-26	FAWW	3,000 Tape & Reel
SP6265JEK1-L/TR	V1=2.85V V2=2.85V	Dual Enable	1.5%	-40°C to +85°C	TSOT-26	GAWW	3,000 Tape & Reel
SP6265KEK1-L/TR	V1=3.0V V2=3.0V	Dual Enable	1.5%	-40°C to +85°C	TSOT-26	HAWW	3,000 Tape & Reel
SP6265LER6-L/TR	V1=1.8V V2=2.5V	Dual Enable	1.5%	-40°C to +85°C	DFN8	6265LEWWX	1,000 Tape & Reel
SP6265MER6-L/TR	V1=1.8V V2=2.8V	Dual Enable	1.5%	-40°C to +85°C	DFN8	6265MEWWX	1,000 Tape & Reel

*Note: "WW" = Product Work Week, "X" = 1st Alpha of Lot Number

Sipex Corporation

Headquarters and Sales Office 233 South Hillview Drive Milpitas, CA 95035 TEL: (408) 934-7500 FAX: (408) 935-7600

Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.